Skip to main content
Log in

Active damping injection controller for web longitude and tensions of nonlinear roll-to-roll systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study presents an advanced algorithm for controlling the web longitude and tension of nonlinear roll-to-roll systems in the form of a cascade structure. Parameter variation and disturbance attenuation problems are addressed systematically. The features of this article are divided into two parts. First, active damping terms are injected to stabilize the system nonlinear dynamics so that the first-order closed-loop transfer functions are obtained for each loop via pole-zero cancelation. Second, disturbance observers are introduced to ensure the performance recovery property by attenuating the disturbances from the model-plant mismatches. The closed-loop system is numerically emulated using MATLAB/Simulink to show the effectiveness of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gassmann, V., Knittel, D., Pagilla, P.R., Bueno, M.-A.: Fixed-order \({H}_\infty \) tension control in the unwinding section of a web handling system using a pendulum dancer. IEEE Trans. Control Syst. Technol. 20, 173–180 (2012)

    Google Scholar 

  2. Chang, D.E., Lévine, J., Jo, J., Choi, K.-H.: Control of roll-to-roll web systems via differential flatness and dynamic feedback linearization. IEEE Trans. Control Syst. Technol. 21, 1309–1317 (2013)

    Article  Google Scholar 

  3. Pagilla, R., Knittel, D.: Recent advances in web longitudinal control. In: Proceedings of 8th International Conference on Web Handling, IWEB2005, Stillwater, Oklahoma, USA, 2005 (2005)

  4. Shin, K.-H.: Tension Control. Tappi Press, New York (2000)

    Google Scholar 

  5. Wolfermann, W.: Tension control of webs, a review of the problems and solutions in the present and future. In: 3rd International Conference on Web Handling, Stillwater, OK (1995)

  6. Ponniah, G., Zubair, M., Doh, Y.-H., Choi, K.-H.: Fuzzy decoupling to reduce propagation of tension disturbances in roll-to-roll system. Int. J. Adv. Manuf. Technol. 71, 153–163 (2014)

    Article  Google Scholar 

  7. Luo, F.L.: Multiple-page-mapping backpropagation neural network forconstant tension control. IET Electr. Power Appl. 145, 239–245 (1998)

    Article  Google Scholar 

  8. Janabi-Sharifi, F.: A neuro-fuzzy system for looper tension control in rolling mills. Control Eng. Pract. 13, 1–13 (2005)

    Article  Google Scholar 

  9. Koç, H., Knittel, D., de Mathelin, M., Abba, G.: Modeling and robust control of winding systems for elastic webs. IEEE Trans. Control Syst. Technol. 10, 197–208 (2002)

    Article  Google Scholar 

  10. Claveau, F., Chevrel, P., Knittel, K.: A 2-DOF gain-scheduled controller design methodology for a multi-motor web transport system. Control Eng. Pract. 16, 609–622 (2008)

    Article  Google Scholar 

  11. Knittel, D., Laroche, E., Gigan, D., Koc, H.: Tension control for winding systems with two-degrees-of-freedom \(h_{\infty }\) controllers. IEEE Trans. Ind. Appl. 39, 113–120 (2003)

    Article  Google Scholar 

  12. Chen, C.-L., Chang, K.-M., Chang, C.-M.: Modeling and control of a web-fed machine. Appl. Math. Model. 28, 863–876 (2004)

    Article  Google Scholar 

  13. Liu, J., Sun, M., Chen, Z., Sun, Q.: Super-twisting sliding mode control for aircraft at high angle of attack based on finite-time extended state observer. Nonlinear Dyn. 1, 1–10 (2020). https://doi.org/10.1007/s11071-020-05481-1

    Article  MATH  Google Scholar 

  14. Chen, G., Guo, Z.: Observer-based distributed control and synchronization analysis of inverter-based nonlinear power systems. Nonlinear Dyn. 1, 1–10 (2019). https://doi.org/10.1007/s11071-019-05393-9

    Article  Google Scholar 

  15. Liu, S., Liu, Y., Liang, X., Wang, N.: Uncertainty observation-based adaptive succinct fuzzy-neuro dynamic surface control for trajectory tracking of fully actuated underwater vehicle system with input saturation. Nonlinear Dyn. 98, 1683–1699 (2019)

    Article  Google Scholar 

  16. Saravanakumar, R., Joo, Y.H.: Fuzzy dissipative and observer control for wind generator systems: a fuzzy time-dependent LKF approach. Nonlinear Dyn. 97, 2189–2199 (2019)

    Article  Google Scholar 

  17. Lin, X., Yu, Y., Sun, C.Y.: A decoupling control for quadrotor UAV using dynamic surface control and sliding mode disturbance observer. Nonlinear Dyn. 97, 781–795 (2019)

    Article  Google Scholar 

  18. Chang, X., Xiong, J., Park, J.H.: Estimation for a class of parameter-controlled tunnel diode circuits. IEEE Syst. Man Cybern. Syst. 1, 1–11 (2020). https://doi.org/10.1109/TSMC.2018.2859933

    Article  Google Scholar 

  19. Chang, X., Yang, G.: Nonfragile \(h_{\infty }\) filter design for T–S fuzzy systems in standard form. IEEE Ind. Electron. 61, 3448–3458 (2014)

    Article  Google Scholar 

  20. Kim, S.-K., Ahn, C.K.: Variable cut-off frequency algorithm-based nonlinear position controller for magnetic levitation system applications. IEEE Syst. Man Cybern. Syst. 1, 1–11 (2020). https://doi.org/10.1109/TSMC.2019.2945176

    Article  Google Scholar 

  21. Kim, S.-K., Ahn, C.K.: Robust invariant manifold-based output voltage-tracking algorithm for DC/DC boost converter systems. IEEE Syst. Man Cybern. Syst. 1, 1–11 (2020). https://doi.org/10.1109/TSMC.2019.2899152

    Article  Google Scholar 

  22. Kim, S.-K., Ahn, C.K., Agarwal, R.K.: Position-tracking controller for two-wheeled mobile balancing robot applications using invariant dynamic surface. IEEE Syst. Man Cybern. Syst. 1, 1–11 (2020). https://doi.org/10.1109/TSMC.2018.2882868

    Article  Google Scholar 

  23. Song, S.-H., Sul, S.-K.: A new tension controller for continuous strip processing line. IEEE Trans. Ind. Appl. 36, 633–639 (2000)

    Article  Google Scholar 

  24. Gassmann, V., Knittel, D.: Robust PI-LPV tension control with elasticity observer for roll-to-roll systems. In: 18th IFAC World Congress, vol. 44, pp. 8639–8644 (2011)

  25. Okada, K., Sakamoto, T.: An adaptive fuzzy control for web tension control system. In: 24th Annual Conference of the IEEE Industrial Electronics Society (1998)

  26. Raul, P.R., Manyam, S.G., Pagilla, P.R., Darbha, S.: Output regulation of nonlinear systems with application to roll-to-roll manufacturing systems. IEEE ASME Trans. Mechatron. 20, 1089–1098 (2015)

    Article  Google Scholar 

  27. Hou, H., Nian, X., Xiong, H., Wang, Z., Peng, Z.: Robust decentralized coordinated control of a multimotor web-winding system. IEEE Trans. Control Syst. Technol. 24, 1495–1503 (2016)

    Article  Google Scholar 

  28. Abjadi, N.R., Soltani, J., Askari, J., Markadeh, G.R.A.: Nonlinear sliding-mode control of a multi-motor web-winding system without tension sensor. IET Control Theory Appl. 3, 419–427 (2009)

    Article  MathSciNet  Google Scholar 

  29. Pagilla, P.R., Siraskar, N.B., Dwivedula, R.V.: Decentralized control of web processing lines. IEEE Trans. Control Syst. Technol. 15, 106–117 (2007)

    Article  Google Scholar 

  30. Xu, J., Xie, S., Tang, T.: Active damping-based control for grid-connected LCL-filtered inverter with injected grid current feedback only. IEEE Trans. Ind. Electron. 61, 4746–4758 (2014)

    Article  Google Scholar 

  31. Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  32. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A6A1A03026005, NRF-2017R1A1A1A05001325) and was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. NRF-2020R1A2C1005449).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon Ki Ahn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SK., Ahn, C.K. Active damping injection controller for web longitude and tensions of nonlinear roll-to-roll systems. Nonlinear Dyn 100, 3367–3379 (2020). https://doi.org/10.1007/s11071-020-05711-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05711-6

Keywords

Navigation