Skip to main content
Log in

A new adaptive neural control scheme for hypersonic vehicle with actuators multiple constraints

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new adaptive neural control method, with the actuators multiple constraints of amplitude and rate into consideration, is proposed in this paper for the flexible air-breathing hypersonic vehicle (AHV). In order to better reflect the characteristics of the actual AHV model, we regard the AHV as a completely unknown non-affine system in the control law design process, which is different from the existing AHV control methods, thus ensuring the reliability of the designed control law. On the basis of the implicit function theorem, the radial basis function neural network (RBFNN) is introduced to approximate the model. Meanwhile, the minimum learning parameter algorithm is adopted to adaptively adjust the weight vector of RBFNN, then the design of the ideal control law is completed. When the amplitude and rate of the actuator are saturated, the designed novel auxiliary error compensation system is used to effectively compensate for the ideal control law, and the stability of the closed-loop control system is proved via the Lyapunov stability theory. In addition, to avoid the “explosion of terms” problem in the control law design process, the finite-time-convergence-differentiator is introduced to accurately estimate the differential signal. Finally, the effectiveness of the control method designed in this paper is verified by simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

m :

Vehicle mass

g :

Gravitational constant

\({{I}_{{yy}}}\) :

Moment of inertia

\({{\zeta }_{i}}\) :

Damping ratio for flexible modes \({{\eta }_{i}}\)

\({{\omega }_{i}}\) :

Natural frequency for flexible modes \({{\eta }_{i}}\)

\({{\tilde{\psi }}_{i}}\) :

Constrained beam coupling constant for \({{\eta }_{i}}\)

\({{L}_\mathrm{f}}\) :

The length of forward beam

\({{L}_\mathrm{a}}\) :

The length of aft beam

\({{\hat{m}}_\mathrm{f}}\) :

Mass distribution of forward beam

\({{\hat{m}}_\mathrm{a}}\) :

Mass distribution of aft beam

\({{\phi }_\mathrm{f}}(\cdot )\) :

Structural mode shape of forward beam

\({{\phi }_\mathrm{a}}(\cdot )\) :

Structural mode shape of aft beam

\(\bar{q}\) :

Dynamic pressure

S :

Reference area

\({{z}_\mathrm{T}}\) :

Thrust moment arm

\(\bar{c}\) :

Aerodynamic chord

\(\bar{\rho }\) :

Air density at height h

\({{h}_{0}}\) :

Nominal altitude

\({{\bar{\rho }}_{0}}\) :

Air density at the altitude \({{h}_{0}}\)

\({1}/{{{h}_{s}}}\) :

Air density decay rate

\({{c}_\mathrm{e}}\) :

Elevator coefficient

\(C_{T}^{{{\alpha }^{i}}}\) :

ith order coefficient of \(\alpha \) in T

\(C_{D}^{{{\alpha }^{i}}}\) :

ith order coefficient of \(\alpha \) in D

\(C_{T}^{{{{\delta }_\text {e} }^{i}}}\) :

ith order coefficient of \({\delta }_\text {e}\) in T

\(C_{D}^{{{{\delta }_\text {e} }^{i}}}\) :

ith order coefficient of \({\delta }_\text {e}\) in D

\(C_{T}^{0}\) :

Constant coefficient in T

\(C_{D}^{0}\) :

Constant coefficient in D

\(C_{L}^{0}\) :

Constant coefficient in L

\(C_{L}^{\alpha }\) :

Coefficient of \(\alpha \) in L

\(C_{L}^{{{\delta }_\text {e}}}\) :

Coefficient of \({{\delta }_\text {e}}\) in L

\(C_{M,\alpha }^{{{\alpha }^{i}}}\) :

ith order coefficient of \(\alpha \) in M

\(C_{M,\alpha }^{0}\) :

Constant coefficient in M

\(N_{j}^{{{\alpha }^{i}}}\) :

ith order contribution of \(\alpha \) to \({{N}_{j}}\)

\(N_{i}^{0}\) :

Constant term in \({{N}_{i}}\)

\(N_{2}^{{{\delta }_\text {e}}}\) :

Contribution of \({{\delta }_\text {e}}\) to \({{N}_{2}}\)

\({{\beta }_{i}}(h,\bar{q})\) :

ith trust fit parameter

References

  1. Bertin, J.J., Cummings, R.M.: Fifty years of hypersonics: where weve been, where were going. Prog. Aerosp. Sci. 39, 511–536 (2003)

    Google Scholar 

  2. Morelli, E.A.: Flight-test experiment design for characterizing stability and control of hypersonic vehicles. J. Guid. Control Dyn. 32(3), 949–959 (2009)

    Google Scholar 

  3. Preller, D., Smart, M.K.: Longitudinal control strategy for hypersonic accelerating vehicles. J. Spacecr. Rockets 52(3), 993–998 (2015)

    Google Scholar 

  4. Duan, H.B., Li, P.: Progress in control approaches for hypersonic vehicle. Sci. China Technol. Sci. 55(10), 2965–2970 (2012)

    Google Scholar 

  5. Xu, B., Shi, Z.K.: An overview on flight dynamics and control approaches for hypersonic vehicles. Sci. China Inf. Sci. 58, 1–18 (2015)

    MathSciNet  Google Scholar 

  6. Sun, C.Y., Mu, C.X., Yu, Y.: Some control problems for near space hypersonic vehicles. Acta Autom. Sin. 39(11), 1901–1913 (2013)

    Google Scholar 

  7. Gang, G., Jinzhi, W.: Reference command tracking control for an air-breathing hypersonic vehicle with parametric uncertainties. J. Frankl. Inst. 350, 1155–1188 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Zhang, L.X., Nie, L., Cai, B., Yuan, S., Wang, D.Z.: Switched linear parameter-varying modeling and tracking control for flexible hypersonic vehicle. Aerosp. Sci. Technol. 95, 105445 (2019)

    Google Scholar 

  9. Hu, C.F., Wei, X.F., Ren, Y.L.: Passive fault-tolerant control based on weighted LPV Tube-MPC for air-breathing hypersonic vehicles. Int. J. Control Autom. Syst 17, 1–14 (2019)

    Google Scholar 

  10. Wang, Z.H., Shi, P., Lim, C.C.: \({{{H}_{-}}}/{{{H}_{\infty }}}\) fault detection observer in finite frequency domain for linear parameter-varying descriptor systems. Automatica 86, 38–45 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Xu, Y., Dong, J.G., Lu, R.Q., Xie, L.H.: Stability of continuous-time positive switched linear systems: a weak common copositive Lyapunov functions approach. Automatica 97, 278–285 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Zhao, Y., Cai, G.B., Zhang, S.X.: Design of LPV anti-windup model reference control system for hypersonic vehicles. Electron. Opt. Control 26(1), 61–67 (2019)

    Google Scholar 

  13. Zhao, Y., Cai, G.B., Zhang, S.X., Hou, M.Z.: Design offinite-time LPV sliding mode controller for hypersonic vehicle. J. Harbin Inst. Technol. 51(4), 107–114 (2019)

    Google Scholar 

  14. Hu, C.F., Yang, N., Ren, Y.L.: Polytopic linear parameter varying model-based tube model predictive control for hypersonic vehicles. Int. J. Adv. Robot. Syst. 14(3), 1–13 (2017). https://doi.org/10.1177/1729881417714398

    Article  Google Scholar 

  15. Wei, X., Liu, L., Wang, Y.J.: Reliability-based linear parameter varying robust non-fragile control for hypersonic vehicles with disturbance observer. Clust. Comput. J. Netw. Softw. Tools Appl. 22, 6709–6728 (2019)

    Google Scholar 

  16. Guanghui, W., Xiuyun, M.: Nonlinear disturbance observer based robust backstepping control for a flexible air-breathing hypersonic vehicle. Aerosp. Sci. Technol. 54, 174–182 (2016)

    Google Scholar 

  17. Wang, X., Guo, J.: Robust nonsingular Terminal sliding mode backstepping control for air-breathing hypersonic vehicles. Acta Aeronaut. Astronaut. Sin. 38(3), 320287 (2017)

    Google Scholar 

  18. Tang, X.N., Zhai, D., Li, X.J.: Adaptive fault-tolerance control based finite-time backstepping for hypersonic flight vehicle with full state constrains. Inf. Sci. 507, 53–66 (2020)

    MathSciNet  Google Scholar 

  19. Dong, C.Y., Liu, Y., Wang, Q.: Barrier Lyapunov function based adaptive finite-time control for hypersonic flight vehicles with state constraints. ISA Trans. 96, 163–176 (2020)

    Google Scholar 

  20. Zhu, Y.Z., Zheng, W.X.: Multiple Lyapunov functions analysis approach for discrete-time switched piecewise-affine systems under dwell-time constraints. Autom. Control, IEEE Trans (2019). https://doi.org/10.1109/TAC.2019.2938302

    Book  Google Scholar 

  21. Zhang, S., Wang, Q., Yang, G., Zhang, M.J.: Anti-disturbance backstepping control for air-breathing hypersonic vehicles based on extended state observer. ISA Trans. 92, 84–93 (2019)

    Google Scholar 

  22. Wang, F., Guo, Y., Wang, K., Zhang, Z., Hua, C.C., Zong, Q.: Disturbance observer based robust backstepping control design of flexible air-breathing hypersonic vehicle. IET Control Theory Appl. 13(4), 572–583 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Tan, S.L., Lei, H.M., Wang, P.F.: Backstepping control for hypersonic vehicle with a novel tracking differentiator. J. Astronaut. 40(6), 673–683 (2019)

    Google Scholar 

  24. Wang, X., Guo, J., Tang, S.J., Qi, S.: Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing hypersonic vehicle. ISA Trans. 88, 233–245 (2019)

    Google Scholar 

  25. Liu, L., Liu, Y.J., Tong, S.C.: Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched nonlinear systems. IEEE Trans. Cybern. 49(7), 2536–2545 (2019)

    Google Scholar 

  26. Wang, H., Liu, P.X., Bao, J., Xie, X.-J., Li, S.: Adaptive neural output-feedback decentralized control for large-scale nonlinear systems with stochastic disturbances. Neural Netw. Learn. Syst, IEEE Trans (2019). https://doi.org/10.1109/TNNLS.2019.2912082

    Book  Google Scholar 

  27. Wang, H.Q., Liu, S.W., Yang, X.B.: Adaptive neural control for non-strict-feedback nonlinear systems with input delay. Sci. Inf. (2019). https://doi.org/10.1016/j.ins.2019.09.043

    Article  Google Scholar 

  28. Huo, X., Ma, L., Zhao, X.D., Niu, B., Zong, G.D.: Observer-based adaptive fuzzy tracking control of MIMO switched nonlinear systems preceded by unknown backlash-like hysteresis. Inf. Sci. 490, 369–386 (2019)

    MathSciNet  Google Scholar 

  29. Bu, X.W., Wu, X.Y., Ma, Z., et al.: Novel adaptive neural control of flexible air-breathing hypersonic vehicles based on sliding mode differentiator. Chin. J. Aeronaut. 28(4), 1209–1216 (2015)

    Google Scholar 

  30. Xia, R.S., Chen, M., Wu, Q.X., Wang, Y.H.: Neural network based integral sliding mode optimal flight control of near space hypersonic vehicle. Neurocomputing. 379, 41–52 (2020)

    Google Scholar 

  31. Zhang, X.F., Chen, K., Fu, W.X., Huang, H.Q.: Neural network-based stochastic adaptive attitude control for generic hypersonic vehicles with full state constraints. Neurocomputing 351, 228–239 (2019)

    Google Scholar 

  32. Zhao, H.W., Liang, Y.: Prescribed performance dynamic neural network control for a flexible hypersonic vehicle with unknown control directions. Adv. Mech. Eng. (2019). https://doi.org/10.1177/1687814019841489

    Article  Google Scholar 

  33. Luo, H., Yin, S., Liu, T.Y., Khan, A.Q.: A data-driven realization of the control-performance-oriented process monitoring system. IEEE Trans. Ind. Electron. 67(1), 521–530 (2020)

    Google Scholar 

  34. Cheng, X.L., Wang, P., Tang, G.J.: Fuzzy-reconstruction-based robust tracking control of an air-breathing hypersonic vehicle. Aerosp. Sci. Technol. 86, 694–703 (2019)

    Google Scholar 

  35. Wang, Y.Y., Yang, X.X., Yan, H.C.: Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information. IEEE Trans. Ind. Electron. 66(12), 9439–9447 (2019)

    Google Scholar 

  36. Liu, H.D., Bao, W.M., Li, H.F., Liao, Y.X.: Multivariable disturbance observer-based fuzzy fast terminal sliding mode attitude control for a hypersonic vehicle. J. Aerosp. Eng. (2019). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000991

    Article  Google Scholar 

  37. Li, J., Zuo, B.: Adaptive terminal sliding mode control for air-breathing hypersonic vehicles under control input constraints. Acta Aeronaut. Astronaut. Sin. 33(2), 220–233 (2012)

    Google Scholar 

  38. Xu, B., Shi, Z.K., Yang, C.G., et al.: Neural control of hypersonic flight vehicle model via time-scale decomposition with throttle setting constraint. Nonlinear Dyn. 73, 1849–1861 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Bing, H., Aijun, L., Bin, X.: Adaptive fault tolerant control for hypersonic vehicle with external disturbance. Int. J. Adv. Robot. Syst. 14(1), 1–7 (2017). https://doi.org/10.1177/1729881416687136

    Article  Google Scholar 

  40. Qinglei, H., Yao, M.: Adaptive backstepping control for air-breathing hypersonic vehicle with actuator dynamics. Aerosp. Sci. Technol. 67, 412–421 (2017)

    Google Scholar 

  41. Guangfu, M., Chen, C.: Adaptive backstepping-based neural network control for hypersonic reentry vehicle with input constraints. IEEE Access 6, 1954–1966 (2018)

    Google Scholar 

  42. Zhonghua, W., Jingchao, L.: Tracking error constrained robust adaptive neural prescribed performance control for flexible hypersonic flight vehicle. Int. J. Adv. Robot. Syst. 14(1), 1–16 (2017). https://doi.org/10.1177/1729881416682704

    Article  Google Scholar 

  43. Xiangwei, B., Xiaoyan, W.: Neural-approximation-based robust adaptive control of flexible air-breathing hypersonic vehicles with parametric uncertainties and control input constraints. Inf. Sci. 346, 29–43 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Bolender, M.A., Doman, D.B.: Nonlinear longitudinal dynamical model of an air-breathing hy-personic vehicle. J. Spacecr. Rockets 44(2), 374–387 (2007)

    Google Scholar 

  45. Parker, J.T., Serrani, A., Yurkovich, S., et al.: Control-oriented modeling of an air-breathing hypersonic vehicle. J. Guid. Control Dyn. 30(3), 856–869 (2007)

    Google Scholar 

  46. Fiorentini, L., Serrani, A.: Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model. Automatica 48, 1248–1261 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Xu, B., Su, F., Liu, H., et al.: Adaptive Kriging controller design for hypersonic flight vehicle via back-stepping. IET Control Theory Appl. 6(4), 487–497 (2012)

    MathSciNet  Google Scholar 

  48. Luo, C.X., Lei, H.M., Zhang, D.Y., Zou, X.J.: Adaptive Neural control of hypersonic vehicles with actuator constraints. J. Aerosp. Eng. Int. (2018). https://doi.org/10.1155/2018/1284753

    Article  Google Scholar 

  49. Bu, X.W., Lei, H.M.: A fuzzy wavelet neural network-based approach to hypersonic flight vehicle direct nonaffine hybrid control. Nonlinear Dyn. 94(3), 1657–1668 (2018)

    MATH  Google Scholar 

  50. Sanner, R., Slotine, J.: Gaussian networks for direct adaptive control. IEEE Trans. Neural Netw. 3(6), 837–863 (1992)

    Google Scholar 

  51. Park, J.H., Huh, S.H., Kim, S.H., et al.: Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks. IEEE Trans. Neural Netw. 16(2), 414–422 (2005)

    Google Scholar 

  52. Calise, A.J., Hovakimyan, N., Idan, M.: Adaptive output feedback control of nonlinear systems using neural networks. Automatica 37(1), 1201–1211 (2001)

    MathSciNet  MATH  Google Scholar 

  53. Wang, X.H., Chen, Z.Q., Yang, G.: Finite-time-convergent differentiator based on singular perturbation technique. IEEE Trans. Autom. Control 52(9), 1731–1737 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the editor and anonymous reviewers for their helpful suggestions for improving the technical note.

Funding

This work was supported by the National Natural Science Foundation of China (Grant nos. 61873278 and 61773398).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changxin Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Lei, H., Li, J. et al. A new adaptive neural control scheme for hypersonic vehicle with actuators multiple constraints. Nonlinear Dyn 100, 3529–3553 (2020). https://doi.org/10.1007/s11071-020-05707-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05707-2

Keywords

Navigation