Skip to main content

Advertisement

Log in

Robust trajectory tracking control of marine surface vessels with uncertain disturbances and input saturations

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a novel robust trajectory tracking control law is proposed for marine surface vessels with uncertain disturbances and input saturations using a tan-type barrier Lyapunov function and a backstepping technique. The low-frequency disturbances in kinetics from wind and waves are estimated by a nonlinear finite-time disturbance observer (FTDO). An adaptive estimation law is employed to estimate the unknown time-varying current velocities. A Gaussian error function-based continuous differentiable asymmetric saturation model is employed to handle the effect of nonsmooth asymmetric saturation nonlinearity using a backstepping technique, and auxiliary dynamic systems are used to compensate for the input saturation constraints on the actuators. Lyapunov stability analysis proves that all the signals of the closed-loop systems are guaranteed to be semi-globally uniformly ultimately bounded, and the tracking errors can converge to a small neighborhood of the origin by appropriately selecting the control parameters. Simulations and comparison results are presented to verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen, M., Ge, S.S., How, B.V.E., Choo, Y.S.: Robust adaptive position mooring control for marine vessels. IEEE Trans. Control Syst. Technol. 21(2), 395–409 (2013). https://doi.org/10.1109/tcst.2012.2183676

    Article  Google Scholar 

  2. Chen, M., Jiang, B.: Adaptive control and constrained control allocation for overactuated ocean surface vessels. Int. J. Syst. Sci. 44(12), 2295–2309 (2013). https://doi.org/10.1080/00207721.2012.702239

    Article  MathSciNet  MATH  Google Scholar 

  3. Dai, S.L., Wang, C., Luo, F.: Identification and learning control of ocean surface ship using neural networks. IEEE Trans. Ind. Inform. 8(4), 801–810 (2012). https://doi.org/10.1109/tii.2012.2205584

    Article  Google Scholar 

  4. Wang, H., Wang, D., Peng, Z.H.: Adaptive dynamic surface control for cooperative path following of marine surface vehicles with input saturation. Nonlinear Dyn. 77(1–2), 107–117 (2014). https://doi.org/10.1007/s11071-014-1277-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, N., Er, M.J.: Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances. IEEE Trans. Control Syst. Technol. 23(3), 991–1002 (2015). https://doi.org/10.1109/tcst.2014.2359880

    Article  Google Scholar 

  6. Siramdasu, Y., Fahimi, F.: Nonlinear dynamic model identification methodology for real robotic surface vessels. Int. J. Control 86(12), 2315–2324 (2013). https://doi.org/10.1080/00207179.2013.813646

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhao, Z., He, W., Ge, S.S.: Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints. IEEE Trans. Control Syst. Technol. 22(4), 1536–1543 (2014). https://doi.org/10.1109/tcst.2013.2281211

    Article  Google Scholar 

  8. Yu, R., Zhu, Q., Xia, G., Liu, Z.: Sliding mode tracking control of an underactuated surface vessel. IET Control Theory Appl. 6(3), 461–466 (2012). https://doi.org/10.1049/iet-cta.2011.0176

    Article  MathSciNet  Google Scholar 

  9. Jiang, B.P., Karimi, H.R., Kao, Y.G., Gao, C.C.: A novel robust fuzzy integral sliding mode control for nonlinear semi-markovian jump T-S fuzzy systems. IEEE Trans. Fuzzy Syst. 26(6), 3594–3604 (2018). https://doi.org/10.1109/tfuzz.2018.2838552

    Article  Google Scholar 

  10. Wang, Y.Y., Karimi, H.R., Lam, H.K., Shen, H.: An improved result on exponential stabilization of sampled-data fuzzy systems. IEEE Trans. Fuzzy Syst. 26(6), 3875–3883 (2018). https://doi.org/10.1109/tfuzz.2018.2852281

    Article  Google Scholar 

  11. Sun, Z.J., Zhang, G.Q., Yang, J., Zhang, W.D.: Research on the sliding mode control for underactuated surface vessels via parameter estimation. Nonlinear Dyn. 91(2), 1163–1175 (2018). https://doi.org/10.1007/s11071-017-3937-8

    Article  MATH  Google Scholar 

  12. Wang, Y.Y., Karimi, H.R., Yan, H.C.: An adaptive event-triggered synchronization approach for chaotic lur'e systems subject to aperiodic sampled data. IEEE Trans. Circuits Syst. II-Express Briefs 66(3), 442–446 (2019). https://doi.org/10.1109/tcsii.2018.2847282

    Article  Google Scholar 

  13. Lu, Y., Zhang, G., Sun, Z., Zhang, W.: Adaptive cooperative formation control of autonomous surface vessels with uncertain dynamics and external disturbances. Ocean Eng. 167, 36–44 (2018). https://doi.org/10.1016/j.oceaneng.2018.08.020

    Article  Google Scholar 

  14. Zhang, D., Xu, Z.H., Karimi, H.R., Wang, Q.G., Yu, L.: Distributed H-infinity output-feedback control for consensus of heterogeneous linear multiagent systems with aperiodic sampled-data communications. IEEE Trans. Ind. Electron. 65(5), 4145–4155 (2018). https://doi.org/10.1109/tie.2017.2772196

    Article  Google Scholar 

  15. Dong, Z.P., Wan, L., Li, Y.M., Liul, T., Zhane, G.C.: Trajectory tracking control of underactuated USV based on modified backstepping approach. Int. J. Nav. Archit. Ocean Eng. 7(5), 817–832 (2015). https://doi.org/10.1515/ijnaoe-2015-0058

    Article  Google Scholar 

  16. Azinheira, J.R., Moutinho, A.: Hover control of an UAV with backstepping design including input saturations. IEEE Trans. Control Syst. Technol. 16(3), 517–526 (2008). https://doi.org/10.1109/tcst.2007.908209

    Article  Google Scholar 

  17. Wang, N., Ahn, C.K.: Hyperbolic-tangent los guidance-based finite-time path following of underactuated marine vehicles. IEEE Trans. Ind. Electron (2019). https://doi.org/10.1109/tie.2019.2947845

    Article  Google Scholar 

  18. Qin, H., Li, C., Sun, Y., Li, X., Du, Y., Deng, Z.: Finite-time trajectory tracking control of unmanned surface vessel with error constraints and input saturations. J. Franklin Inst. (2019). https://doi.org/10.1016/j.jfranklin.2019.07.019

    Article  Google Scholar 

  19. Wang, N., Pan, X.: Path following of autonomous underactuated ships: a translation-rotation cascade control approach. IEEE/ASME Trans. Mechatron. 24(6), 2583–2593 (2019). https://doi.org/10.1109/tmech.2019.2932205

    Article  Google Scholar 

  20. Guerreiro, B.J., Silvestre, C., Cunha, R., Pascoal, A.: Trajectory tracking nonlinear model predictive control for autonomous surface craft. IEEE Trans. Control Syst. Technol. 22(6), 2160–2175 (2014). https://doi.org/10.1109/tcst.2014.2303805

    Article  Google Scholar 

  21. Cui, R.X., Chen, L.P., Yang, C.G., Chen, M.: Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans. Ind. Electron. 64(8), 6785–6795 (2017). https://doi.org/10.1109/tie.2017.2694410

    Article  Google Scholar 

  22. Wang, Y., Karimi, H.R., Lam, H.K., Yan, H.: Fuzzy output tracking control and filtering for nonlinear discrete-time descriptor systems under unreliable communication links. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2920709

    Article  Google Scholar 

  23. Wang, N., He, H.: Dynamics-level finite-time fuzzy monocular visual servo of an unmanned surface vehicle. IEEE Trans. Ind. Electron (2019). https://doi.org/10.1109/tie.2019.2952786

    Article  Google Scholar 

  24. Belleter, D., Maghenem, M.A., Paliotta, C., Pettersen, K.Y.: Observer based path following for underactuated marine vessels in the presence of ocean currents: a global approach. Automatica 100, 123–134 (2019). https://doi.org/10.1016/j.automatica.2018.11.008

    Article  MathSciNet  MATH  Google Scholar 

  25. Fan, Y., Huang, H., Tan, Y.: Robust adaptive path following control of an unmanned surface vessel subject to input saturation and uncertainties. Appl. Sci. (2019). https://doi.org/10.3390/app9091815

    Article  Google Scholar 

  26. Xia, G.Q., Xue, J.J., Jiao, J.P.: Dynamic positioning control system with input time-delay using fuzzy approximation approach. Int. J. Fuzzy Syst. 20(2), 630–639 (2018). https://doi.org/10.1007/s40815-017-0372-4

    Article  MathSciNet  Google Scholar 

  27. Pan, C.Z., Lai, X.Z., Yang, S.X., Wu, M.: An efficient neural network approach to tracking control of an autonomous surface vehicle with unknown dynamics. Expert Syst. Appl. 40(5), 1629–1635 (2013). https://doi.org/10.1016/j.eswa.2012.09.008

    Article  Google Scholar 

  28. Wang, N., Sun, J.C., Er, M.J., Liu, Y.C.: A novel extreme learning control framework of unmanned surface vehicles. IEEE Trans. Cybern. 46(5), 1106–1117 (2016). https://doi.org/10.1109/tcyb.2015.2423635

    Article  Google Scholar 

  29. Yang, Y., Du, J., Liu, H., Guo, C., Abraham, A.: A trajectory tracking robust controller of surface vessels with disturbance uncertainties. IEEE Trans. Control Syst. Technol. 22(4), 1511–1518 (2014). https://doi.org/10.1109/tcst.2013.2281936

    Article  Google Scholar 

  30. Sun, T., Zhang, J., Pan, Y.: Active disturbance rejection control of surface vessels using composite error updated extended state observer. Asian J. Control (2017). https://doi.org/10.1002/asjc.1489

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, N., Deng, Z.: Finite-time fault estimator based fault-tolerance control for a surface vehicle with input saturations. IEEE Trans. Ind. Inform. 16(2), 1172–1181 (2020). https://doi.org/10.1109/tii.2019.2930471

    Article  Google Scholar 

  32. Wang, N., Su, S.: Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles. IEEE Trans. Control Syst. Technol. (2019). https://doi.org/10.1109/tcst.2019.2955657

    Article  Google Scholar 

  33. Liu, C., Chen, C.L.P., Zou, Z.J., Li, T.S.: Adaptive NN-DSC control design for path following of underactuated surface vessels with input saturation. Neurocomputing 267, 466–474 (2017). https://doi.org/10.1016/j.neucom.2017.06.042

    Article  Google Scholar 

  34. Yin, Z., He, W., Yang, C.G.: Tracking control of a marine surface vessel with full-state constraints. Int. J. Syst. Sci. 48(3), 535–546 (2017). https://doi.org/10.1080/00207721.2016.1193255

    Article  MathSciNet  MATH  Google Scholar 

  35. Ghommam, J., El Ferik, S., Saad, M.: Robust adaptive path-following control of underactuated marine vessel with off-track error constraint. Int. J. Syst. Sci. 49(7), 1540–1558 (2018). https://doi.org/10.1080/00207721.2018.1460412

    Article  MathSciNet  Google Scholar 

  36. Guo, X.-G., Wang, J.-L., Liao, F., Teo, R.S.H.: CNN-based distributed adaptive control for vehicle-following platoon with input saturation. IEEE Trans. Intell. Transp. Syst. 19(10), 3121–3132 (2018). https://doi.org/10.1109/tits.2017.2772306

    Article  Google Scholar 

  37. Zheng, Z., Feroskhan, M.: Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances. IEEE/ASME Trans. Mechatron. 22(6), 2564–2575 (2017). https://doi.org/10.1109/tmech.2017.2756110

    Article  Google Scholar 

  38. Du, J.L., Hu, X., Krstic, M., Sun, Y.Q.: Robust dynamic positioning of ships with disturbances under input saturation. Automatica 73, 207–214 (2016). https://doi.org/10.1016/j.automatica.2016.06.020

    Article  MathSciNet  MATH  Google Scholar 

  39. Mu, D.D., Wang, G.F., Fan, Y.S.: Tracking control of podded propulsion unmanned surface vehicle with unknown dynamics and disturbance under input saturation. Int. J. Control Autom. Syst. 16(4), 1905–1915 (2018). https://doi.org/10.1007/s12555-017-0292-y

    Article  Google Scholar 

  40. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  Google Scholar 

  41. Peng, Z., Wang, D., Wang, H., Wang, W.: Coordinated formation pattern control of multiple marine surface vehicles with model uncertainty and time-varying ocean currents. Neural Comput. Appl. 25(7–8), 1771–1783 (2014). https://doi.org/10.1007/s00521-014-1668-z

    Article  Google Scholar 

  42. Wen, C., Zhou, J., Liu, Z., Su, H.: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Autom. Control 56(7), 1672–1678 (2011). https://doi.org/10.1109/tac.2011.2122730

    Article  MathSciNet  MATH  Google Scholar 

  43. Ma, J., Ge, S.S., Zheng, Z., Hu, D.: Adaptive NN control of a class of nonlinear systems with asymmetric saturation actuators. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1532–1538 (2015). https://doi.org/10.1109/TNNLS.2014.2344019

    Article  MathSciNet  Google Scholar 

  44. Chen, M., Tao, G., Jiang, B.: Dynamic surface control using neural networks for a class of uncertain nonlinear systems with input saturation. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 2086–2097 (2015). https://doi.org/10.1109/tnnls.2014.2360933

    Article  MathSciNet  Google Scholar 

  45. Mokhtari, M.R., Cherki, B., Braham, A.C.: Disturbance observer based hierarchical control of coaxial-rotor UAV. ISA Trans. 67, 466–475 (2017). https://doi.org/10.1016/j.isatra.2017.01.020

    Article  Google Scholar 

  46. Almeida, J., Silvestre, C., Pascoal, A.: Cooperative control of multiple surface vessels in the presence of ocean currents and parametric model uncertainty. Int. J. Robust Nonlinear Control 20(14), 1549–1565 (2010). https://doi.org/10.1002/rnc.1526

    Article  MathSciNet  MATH  Google Scholar 

  47. Miao, J., Wang, S., Tomovic, M.M., Zhao, Z.: Compound line-of-sight nonlinear path following control of underactuated marine vehicles exposed to wind, waves, and ocean currents. Nonlinear Dyn. 89(4), 2441–2459 (2017). https://doi.org/10.1007/s11071-017-3596-9

    Article  MathSciNet  Google Scholar 

  48. Jin, X.: Adaptive finite-time fault-tolerant tracking control for a class of MIMO nonlinear systems with output constraints. Int. J. Robust Nonlinear Control 27(5), 722–741 (2017). https://doi.org/10.1002/rnc.3596

    Article  MathSciNet  MATH  Google Scholar 

  49. Zou, Y., Zheng, Z.W.: A robust adaptive RBFNN augmenting backstepping control approach for a model-scaled helicopter. IEEE Trans. Control Syst. Technol. 23(6), 2344–2352 (2015). https://doi.org/10.1109/tcst.2015.2396851

    Article  Google Scholar 

  50. Peng, Z., Wang, D., Wang, J.: Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2156–2167 (2017). https://doi.org/10.1109/tnnls.2016.2577342

    Article  MathSciNet  Google Scholar 

  51. Wang, Y., Karimi, H.R., Shen, H., Fang, Z., Liu, M.: Fuzzy-model-based sliding mode control of nonlinear descriptor systems. IEEE Trans. Cybern. 49(9), 3409–3419 (2019). https://doi.org/10.1109/TCYB.2018.2842920

    Article  Google Scholar 

  52. Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005). https://doi.org/10.1109/tnn.2004.839354

    Article  Google Scholar 

  53. Skjetne, R., Fossen, T.I., Kokotović, P.V.: Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory. Automatica 41(2), 289–298 (2005). https://doi.org/10.1016/j.automatica.2004.10.006

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2019 "Chong First-class" Provincial Financial Special Funds Construction Project [Grant No. 231419019], the Natural Science Foundation of Guangdong Province in China [Grant No. 2018A0303130076], the Fostering Plan for Major Scientific Research Projects of Education Department of Guangdong Province-Characteristic Innovation Projects (Grant No. 2017KTSCX087) and the Fund of Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) (Grant No. ZJW-2019-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Chen, G. Robust trajectory tracking control of marine surface vessels with uncertain disturbances and input saturations. Nonlinear Dyn 100, 3513–3528 (2020). https://doi.org/10.1007/s11071-020-05701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05701-8

Keywords

Navigation