Skip to main content

Advertisement

Log in

Design, analysis, and feedback control of a nonlinear micro-piezoelectric–electrostatic energy harvester

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A nonlinear micro-piezoelectric–electrostatic energy harvester is designed and studied using mathematical and computational methods. The system consists of a cantilever beam substrate, a bimorph piezoelectric transducer, a pair of tuning parallel-plate capacitors, and a tip–mass. The governing nonlinear mathematical model of the electro-mechanical system including nonlinear material and quadratic air-damping is derived for the series connection of the piezoelectric layers. The static and modal frequency curves are computed to optimize the operating point, and a parametric study is performed using numerical methods. A bias DC voltage is used to adapt the system to resonate with respect to the frequency of external vibration. Furthermore, to improve the bandwidth and performance of the harvester (and achieve a high level of harvested power without sacrificing the bandwidth), a nonlinear feedback loop is integrated into the design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abdelkefi, A., Nayfeh, A., Hajj, M.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67(2), 1147–1160 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Alevras, P., Theodossiades, S., Rahnejat, H.: On the dynamics of a nonlinear energy harvester with multiple resonant zones. Nonlinear Dyn. 92(3), 1–16 (2018)

    Google Scholar 

  3. Arnold, D.P.: Review of microscale magnetic power generation. IEEE Trans. Magn. 43(11), 3940–3951 (2007)

    Google Scholar 

  4. Beeby, S.P., Tudor, M.J., White, N.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175 (2006)

    Google Scholar 

  5. Chen, C., Zanette, D.H., Guest, J.R., Czaplewski, D.A., López, D.: Self-sustained micromechanical oscillator with linear feedback. Phys. Rev. Lett. 117(1), 017203 (2016)

    Google Scholar 

  6. Cook-Chennault, K., Thambi, N., Sastry, A.: Powering mems portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17(4), 043001 (2008)

    Google Scholar 

  7. da Silva, C.M., Glynn, C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams. i. equations of motion. J. Struct. Mech. 6(4), 437–448 (1978)

    Google Scholar 

  8. Daqaq, M.F., Stabler, C., Qaroush, Y., Seuaciuc-Osorio, T.: Investigation of power harvesting via parametric excitations. J. Intell. Mater. Syst. Struct. 20(5), 545–557 (2009)

    Google Scholar 

  9. Du Toit, N.E.: Modeling and design of a mems piezoelectric vibration energy harvester. In: Master’s Thesis, Massachusetts Institute of Technology (MIT) (2005)

  10. Ferrari, M., Ferrari, V., Guizzetti, M., Andò, B., Baglio, S., Trigona, C.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuators A Phys. 162(2), 425–431 (2010)

    Google Scholar 

  11. Glynne-Jones, P., Beeby, S.P., White, N.M.: Towards a piezoelectric vibration-powered microgenerator. IEEE Proc. Sci. Meas. Technol. 148(2), 68–72 (2001)

    Google Scholar 

  12. Hu, Y.C., Chang, P.Z., Chuang, W.C.: An approximate analytical solution to the pull-in voltage of a micro bridge with an elastic boundary. J. Micromech. Microeng. 17(9), 1870 (2007)

    Google Scholar 

  13. Hwang, M., Arrieta, A.F.: Input-independent energy harvesting in bistable lattices from transition waves. Sci. Rep. 8(1), 3630 (2018)

    Google Scholar 

  14. Jeon, Y., Sood, R., Jeong, J.H., Kim, S.G.: MEMS power generator with transverse mode thin film PZT. Sens. Actuators A Phys. 122(1), 16–22 (2005)

    Google Scholar 

  15. Jia, Y., Seshia, A.A.: An auto-parametrically excited vibration energy harvester. Sens. Actuators A Phys. 220, 69–75 (2014)

    Google Scholar 

  16. Jia, Y., Seshia, A.A.: Five topologies of cantilever-based MEMS piezoelectric vibration energy harvesters: a numerical and experimental comparison. Microsyst. Technol. 22(12), 2841–2852 (2016)

    Google Scholar 

  17. Jia, Y., Yan, J., Soga, K., Seshia, A.A.: Parametric resonance for vibration energy harvesting with design techniques to passively reduce the initiation threshold amplitude. Smart Mater. Struct. 23(6), 065011 (2014)

    Google Scholar 

  18. Kumar, A., Ali, S.F., Arockiarajan, A.: Exploring the benefits of an asymmetric monostable potential function in broadband vibration energy harvesting. Appl. Phys. Lett. 112(23), 233901 (2018)

    Google Scholar 

  19. Lajimi, S.A.M.: Apparatus and method for improved shock, impact, and motion detection. US Patent App. 62/839,378 (2019)

  20. Lajimi, S.A.M., Heppler, G.R.: Free vibration and buckling of cantilever beams under linearly varying axial load carrying an eccentric end rigid body. Trans. Can. Soc. Mech. Eng. 37(1), 89–109 (2013)

    Google Scholar 

  21. Lajimi, S.A.M., Noori, N., Marzouk, A., Bahreyni, B., Golnaraghi, F.: A novel nonlinear amplitude-modulation gyroscope incorporating internal resonance. In: Proceedings of the 25th CANCAM, pp. 1–4 (2015)

  22. Leadenham, S., Erturk, A.: M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: harmonic balance analysis and experimental validation. J. Sound Vib. 333(23), 6209–6223 (2014)

    Google Scholar 

  23. Leadenham, S., Erturk, A.: Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dyn. 79(3), 1727–1743 (2015)

    Google Scholar 

  24. Lee, H., Sharpes, N., Abdelmoula, H., Abdelkefi, A., Priya, S.: Higher power generation from torsion-dominant mode in a zig–zag shaped two-dimensional energy harvester. Appl. Energy 216, 494–503 (2018)

    Google Scholar 

  25. Liu, D., Al-Haik, M., Zakaria, M., Hajj, M.R.: Piezoelectric energy harvesting using l-shaped structures. J. Intell. Mater. Syst. Struct. 29(6), 1206–1215 (2018)

    Google Scholar 

  26. Madinei, H., Khodaparast, H.H., Adhikari, S., Friswell, M.: Design of MEMS piezoelectric harvesters with electrostatically adjustable resonance frequency. Mech. Syst. Signal Process. 81, 360–374 (2016)

    Google Scholar 

  27. Madinei, H., Khodaparast, H.H., Friswell, M., Adhikari, S.: Minimising the effects of manufacturing uncertainties in mems energy harvesters. Energy 149, 990–999 (2018)

    Google Scholar 

  28. Meirovitch, L.: Principles and Techniques of Vibrations, vol. 1. Prentice Hall, New Jersey (1997)

    Google Scholar 

  29. Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E., Holmes, A., Green, T.: Mems electrostatic micropower generator for low frequency operation. Sens. Actuators A Phys. 115(2–3), 523–529 (2004)

    Google Scholar 

  30. Mousavi Lajimi, S.A., Friswell, M.I.: Energy harvesting from a non-linear standing beam-mass system: two-versus one-mode approximations. J. Intell. Mater. Syst. Struct. 28(8), 1010–1022 (2017)

    Google Scholar 

  31. Nayfeh, A.H., Pai, P.F.: Non-linear non-planar parametric responses of an inextensional beam. Int. J. Non-Linear Mech. 24(2), 139–158 (1989)

    MATH  Google Scholar 

  32. Osterberg, P.M., Senturia, S.D.: M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J. Microelectromech. Syst. 6(2), 107–118 (1997)

    Google Scholar 

  33. Ramini, A., Alcheikh, N., Ilyas, S., Younis, M.I.: Efficient primary and parametric resonance excitation of bistable resonators. AIP Adv. 6(9), 095307 (2016)

    Google Scholar 

  34. Ramini, A.H., Hajjaj, A.Z., Younis, M.I.: Tunable resonators for nonlinear modal interactions. Sci. Rep. 6, 34717 (2016)

    Google Scholar 

  35. Ramini, A.H., Hennawi, Q.M., Younis, M.I.: Theoretical and experimental investigation of the nonlinear behavior of an electrostatically actuated in-plane mems arch. J. Microelectromech. Syst. 25(3), 570–578 (2016)

    Google Scholar 

  36. Stanton, S.C., Erturk, A., Mann, B.P., Dowell, E.H., Inman, D.J.: Nonlinear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effects. J. Intell. Mater. Syst. Struct. 23(2), 183–199 (2012)

    Google Scholar 

  37. Stanton, S.C., McGehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95(17), 174103 (2009)

    Google Scholar 

  38. Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Phys. D: Nonlinear Phenom. 239(10), 640–653 (2010)

    MATH  Google Scholar 

  39. van der Meijs, N., Fokkema, J.: VLSI circuit reconstruction from mask topology. Integr. VLSI J. 2(2), 85–119 (1984)

    Google Scholar 

  40. Wang, Q.M., Cross, L.E.: Constitutive equations of symmetrical triple layer piezoelectric benders. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1343–1351 (1999)

    Google Scholar 

  41. Ya’akobovitz, A., Krylov, S.: Toward sensitivity enhancement of mems accelerometers using mechanical amplification mechanism. IEEE Sens. J. 10(8), 1311–1319 (2010)

    Google Scholar 

  42. Yang, Z., Zhou, S., Zu, J., Inman, D.: High-performance piezoelectric energy harvesters and their applications. Joule 2(4), 642–697 (2018)

    Google Scholar 

Download references

Funding

Authors have not receive any funding for this study. Authors have no sponsor for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amir Mousavi Lajimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Parameter expressions

Appendix: Parameter expressions

In the following equations, prime \((\,)'\) represents the spatial derivative,

$$\begin{aligned} k_l&= E_s I_s \int _0^{L_s} \psi ''(r){}^2 \, \hbox {d}r \end{aligned}$$
(26)
$$\begin{aligned} k_n&= E_s I_s \int _0^{L_s} \psi '(r){}^2 \psi ''(r){}^2 \, \hbox {d}r \end{aligned}$$
(27)
$$\begin{aligned} m_l&= m_p \int _0^{L_p} \psi (r)^2 \, dr + m_s \int _0^{L_s} \psi (r)^2 \hbox {d}r \nonumber \\&\quad + m_t \psi \left( L_s\right) ^2 + J_t \psi '\left( L_s\right) ^2 \end{aligned}$$
(28)
$$\begin{aligned} m_n&= m_t \left( \int _0^{L_s} \psi '(r)^2 \, \hbox {d}r \right) ^2 + J_t \psi '(L_s)^4 \nonumber \\&\quad + m_p \int _0^{L_p} \left( \int _0^r \psi '(r)^2 \, dr\right) ^2 \hbox {d}r \nonumber \\&\quad + m_s \int _0^{L_s} \left( \int _0^r \psi '(r)^2 \hbox {d}r\right) ^2 \hbox {d}r \end{aligned}$$
(29)
$$\begin{aligned} f_l&= m_p \int _0^{L_p} \psi (r) z(r) \, dr + m_s \int _0^{L_s} \psi (r) z(r) \hbox {d}r \nonumber \\&\quad + m_t \psi \left( L_s\right) z\left( L_s\right) \end{aligned}$$
(30)
$$\begin{aligned} f_n&= m_t z(L_s)^2 + m_p \int _0^{L_p} z(r)^2 \hbox {d}r \nonumber \\&\quad + m_s \int _0^{L_s} z(r)^2 \hbox {d}r \end{aligned}$$
(31)
$$\begin{aligned} h^q_l&= \frac{1}{12} b c_p^{11} h_p \left( 4 h_p ^2+6 h_p h_s +3 h_s ^2\right) \int _0^{ L_p } \psi ''(r)^2 \, \hbox {d}r \end{aligned}$$
(32)
$$\begin{aligned} h^\lambda _l&= -\frac{1}{2} b e_{31} ( h_p + h_s ) \int _0^{ L_p } \psi ''(r) \hbox {d}r \end{aligned}$$
(33)
$$\begin{aligned} h^\lambda _n&= -\frac{1}{4} b e_{31} ( h_p + h_s ) \int _0^{ L_p } \psi '(r)^2 \psi ''(r) \hbox {d}r \nonumber \\&\quad -\frac{1}{24} b e_{3111} \left( 2 h_p ^3+4 h_p ^2 h_s +3 h_p h_s ^2+ h_s ^3\right) \nonumber \\&\quad \times \int _0^{ L_p } \psi ''(r)^3 \hbox {d}r \end{aligned}$$
(34)
$$\begin{aligned} h^q_n&= \frac{1}{12} b c_p^{11} h_p \left( 4 h_p^2 + 6 h_p h_s +3 h_s^2 \right) \int _0^{ L_p } \psi '(r)^2 \psi ''(r)^2 \hbox {d}r \nonumber \\&\quad +\frac{1}{160} b c_p^{1111} h_p \nonumber \\&\quad \times \left( 16 h_p^4 + 40 h_p^3 h_s + 40 h_p^2 h_s^2 + 20 h_p h_s ^3 + 5 h_s ^4 \right) \nonumber \\&\quad \times \int _0^{ L_p } \psi ''(r)^4 \hbox {d}r \end{aligned}$$
(35)
$$\begin{aligned} C_p&= -\frac{b L_p \epsilon _{33}}{4 h_p } \end{aligned}$$
(36)
$$\begin{aligned} \gamma _l&= \frac{\epsilon _0 \epsilon _r}{g^3} \left( 2 b_s + 0.33125 \left( b_s^{0.25} + h_s^{0.25} \right) g^{0.75} \right) \nonumber \\&\quad \times \int _{0}^{L_m} (\psi (L_s) + r \psi '(L_s)) ^2 \, \hbox {d}r \end{aligned}$$
(37)
$$\begin{aligned} \gamma _n&= \frac{\epsilon _0 \epsilon _r}{g^5} \left( 2 b_s + 0.201856 \left( b_s^{0.25} + h_s^{0.25} \right) g^{0.75} \right) \nonumber \\&\quad \times \int _{0}^{L_m} (\psi (L_s) + r \psi '(L_s)) ^4 \, \hbox {d}r \end{aligned}$$
(38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi Lajimi, S.A., Friswell, M.I. Design, analysis, and feedback control of a nonlinear micro-piezoelectric–electrostatic energy harvester. Nonlinear Dyn 100, 3029–3042 (2020). https://doi.org/10.1007/s11071-020-05690-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05690-8

Keywords

Navigation