Skip to main content
Log in

Voltage-induced beating vibration of a dielectric elastomer membrane

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An AC voltage induces a nonlinear vibration of dielectric elastomers (DEs), which enables DE to be served as soft dynamical devices and robots. As is known, a special beating vibration may occur during the nonlinear oscillation of DEs, leading to the undesired electromechanical failures and instabilities. In this article, a numerical study is developed to explore the beating vibration of DEs with establishment of the dynamics model. The effects of geometric sizes, limiting stretch, as well as amplitude and frequency of applied voltage on the beating vibration performance of DEs are investigated, respectively. The corresponding range of actuation and materials parameters that determines the occurrence of beating vibration is obtained. The phase paths and Poincaré maps are employed to detect the stability and periodicity of nonlinear beating vibration of DEs. The bifurcation analyses of dynamic electromechanical performances of DE are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000)

    Google Scholar 

  2. Zurlo, G., Destrade, M., DeTommasi, D., Puglisi, G.: Catastrophic thinning of dielectric elastomers. Phys. Rev. Lett. 118, 078001 (2017)

    Google Scholar 

  3. Zhang, J., Chen, H., Li, D.: Method to control dynamic snap-through instability of dielectric elastomers. Phys. Rev. Appl. 6, 064012 (2016)

    Google Scholar 

  4. Jin, X., Tian, Y., Wang, Y., Huang, Z.: Optimal bounded parametric control for random vibration of dielectric elastomer balloon. Nonlinear Dyn. 94, 1081–1093 (2018)

    Google Scholar 

  5. Suo, Z.: Theory of dielectric elastomers. Acta Mech. Solida Sin. 23, 549–578 (2010)

    Google Scholar 

  6. An, L., Wang, F., Cheng, S., Lu, T., Wang, T.J.: Experimental investigation of the electromechanical phase transition in a dielectric elastomer tube. Smart Mater. Struct. 24, 035006 (2015)

    Google Scholar 

  7. Pei, Q., Pelrine, R., Stanford, S., Kornbluh, R., Rosenthal, M.: Electroelastomer rolls and their application for biomimetic walking robots. Synth. Met. 135–136, 129–131 (2003)

    Google Scholar 

  8. Kovacs, G., Lochmatter, P., Wissler, M.: An arm wrestling robot driven by dielectric elastomer actuators. Smart Mater. Struct. 16, S306–S317 (2007)

    Google Scholar 

  9. Zhang, H., Wang, M.Y.: Multi-axis soft sensors based on dielectric elastomer. Soft Robot. 3, 3–12 (2016)

    Google Scholar 

  10. Cao, C., Gao, X., Conn, A.T.: A compliantly coupled dielectric elastomer actuator using magnetic repulsion. Appl. Phys. Lett. 114, 011904 (2019)

    Google Scholar 

  11. Papini, G.P.R., Moretti, G., Vertechy, R., Fontana, M.: Control of an oscillating water column wave energy converter based on dielectric elastomer generator. Nonlinear Dyn. 92, 181–202 (2017)

    Google Scholar 

  12. Zhang, J., Li, B., Chen, H., Pei, Q.: Dissipative performance of dielectric elastomers under various voltage waveforms. Soft Matter 12, 2348–2356 (2016)

    Google Scholar 

  13. Dai, H.L., Wang, L.: Nonlinear oscillations of a dielectric elastomer membrane subjected to in-plane stretching. Nonlinear Dyn. 82, 1709–1719 (2015)

    Google Scholar 

  14. Li, Y., Oh, I., Chen, J., Zhang, H., Hu, Y.: Nonlinear dynamic analysis and active control of visco-hyperelastic dielectric elastomer membrane. Int. J. Solids Struct. 152–153, 28–38 (2018)

    Google Scholar 

  15. Tang, D., Lim, C.W., Hong, L., Jiang, J., Lai, S.K.: Analytical asymptotic approximations for large amplitude nonlinear free vibration of a dielectric elastomer balloon. Nonlinear Dyn. 88, 2255–2264 (2017)

    Google Scholar 

  16. Zhao, J., Niu, J., McCoul, D., Ren, Z., Pei, Q.: Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint. Appl. Phys. Lett. 106, 133504 (2015)

    Google Scholar 

  17. Keplinger, C., Sun, J.-Y., Foo, C.C., Rothemund, P., Whitesides, G.M., Suo, Z.: Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013)

    Google Scholar 

  18. Li, Z., Wang, Y., Foo, C.C., Godaba, H., Zhu, J., Yap, C.H.: The mechanism for large-volume fluid pumping via reversible snap-through of dielectric elastomer. J. Appl. Phys. 122, 084503 (2017)

    Google Scholar 

  19. Lu, Z., Shrestha, M., Lau, G.-K.: Electrically tunable and broader-band sound absorption by using micro-perforated dielectric elastomer actuator. Appl. Phys. Lett. 110, 182901 (2017)

    Google Scholar 

  20. Li, T., Li, G., Liang, Y., Cheng, T., Dai, J., Yang, X., Liu, B., Zeng, Z., Huang, Z., Luo, Y., Xie, T., Yang, W.: Fast-moving soft electronic fish. Sci. Adv. 3, e1602045 (2017)

    Google Scholar 

  21. Zhang, J., Chen, H., Li, D.: Pinnacle elimination and stability analyses in nonlinear oscillation of soft dielectric elastomer slide actuators. Nonlinear Dyn. 94, 1907–1920 (2018)

    Google Scholar 

  22. Zhu, J.: Instability in nonlinear oscillation of dielectric elastomers. J. Appl. Mech. 82, 061001 (2015)

    Google Scholar 

  23. Xu, B.-X., Muller, R., Theis, A., Klassen, M., Gross, D.: Dynamic analysis of dielectric elastomer actuators. Appl. Phys. Lett. 100, 112903 (2012)

    Google Scholar 

  24. Zhang, J., Chen, H., Li, D.: Modeling nonlinear dynamic properties of dielectric elastomers with various crosslinks, entanglements, and finite deformations. J. Appl. Phys. 123, 084901 (2018)

    Google Scholar 

  25. Li, T., Qu, S., Yang, W.: Electromechanical and dynamic analyses of tunable dielectric elastomer resonator. Int. J. Solids Struct. 49, 3754–3761 (2012)

    Google Scholar 

  26. Zhang, J., Tang, L., Li, B., Wang, Y., Chen, H.: Modeling of the dynamic characteristic of viscoelastic dielectric elastomer actuators subject to different conditions of mechanical load. J. Appl. Phys. 117, 084902 (2015)

    Google Scholar 

  27. Awrejcewicz, J., Krysko, V.A., Papkova, I.V., Krysko, A.V.: Routes to chaos in continuous mechanical systems. Part 1: mathematical models and solution methods. Chaos Soliton. Fract. 45, 687–708 (2012)

    MATH  Google Scholar 

  28. Krysko, A.V., Awrejcewicz, J., Papkova, I.V., Krysko, V.A.: Routes to chaos in continuous mechanical systems: part 2. Modelling transitions from regular to chaotic dynamics. Chaos Soliton. Fract. 45, 709–720 (2012)

    MATH  Google Scholar 

  29. Awrejcewicz, J., Krysko, A.V., Papkova, I.V., Krysko, V.A.: Routes to chaos in continuous mechanical systems part 3: the Lyapunov exponents, hyper, hyper-hyper and spatial–temporal chaos. Chaos Soliton. Fract. 45, 721–736 (2012)

    Google Scholar 

  30. Awrejcewicz, J., Krysko, V.A., Papkova, I.V., Krysko, A.V.: Deterministic Chaos in One Dimensional Continuous Systems. World Scientific, Singapore (2016)

    MATH  Google Scholar 

  31. Gu, G.-Y., Gupta, U., Zhu, J., Zhu, L.-M., Zhu, X.: Modeling of viscoelasticity electromechanical behavior in a soft dielectric elastomer actuator. IEEE Trans. Robot. 33, 1263–1271 (2017)

    Google Scholar 

  32. Zhang, J., Chen, H., Li, B., McCoul, D., Pei, Q.: Coupled nonlinear oscillation and stability evolution of viscoelastic dielectric elastomers. Soft Matter 11, 7483–7493 (2015)

    Google Scholar 

  33. York, A., Dunn, J., Seelecke, S.: Experimental characterization of the hysteretic and rate-dependent electromechanical behavior of dielectric electroactive polymer actuators. Smart Mater. Struct. 19, 094014 (2010)

    Google Scholar 

  34. Park, H.S., Nguyen, T.D.: Viscoelastic effects on electromechanical instabilities in dielectric elastomers. Soft Matter 9, 1031–1042 (2013)

    Google Scholar 

  35. Liu, L., Chen, H., Sheng, J., Zhang, J., Wang, Y., Jia, S.: Experimental study on the dynamic response of in-plane deformation of dielectric elastomer under alternating electric load. Smart Mater. Struct. 23, 025037 (2014)

    Google Scholar 

  36. Hong, W.: Modeling viscoelastic dielectrics. J. Mech. Phys. Solids 59, 637–650 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Zhang, J., Ru, J., Chen, H., Li, D., Lu, J.: Viscoelastic creep and relaxation of dielectric elastomers characterized by a Kelvin–Voigt–Maxwell model. Appl. Phys. Lett. 110, 044104 (2017)

    Google Scholar 

  38. Khan, K.A., Wafai, H., Sayed, T.E.: A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer. Comput. Mech. 52, 345–360 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Kiser, J., Manning, M., Adler, D., Breuer, K.: A reduced order model for dielectric elastomer actuators over a range of frequencies and prestrains. Appl. Phys. Lett. 109, 133506 (2016)

    Google Scholar 

  40. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)

    MathSciNet  Google Scholar 

  41. Zhang, J., Chen, H., Li, D.: Nonlinear dynamical model of a soft viscoelastic dielectric elastomer. Phys. Rev. Appl. 8, 064016 (2017)

    Google Scholar 

  42. Liu, L., Li, B., Sun, W., Chen, H., Li, D.: Viscoelastic effect and creep elimination of dielectric elastomers in adversarial resonance. J. Appl. Phys. 120, 164502 (2016)

    Google Scholar 

  43. Wang, F., Lu, T., Wang, T.J.: Nonlinear vibration of dielectric elastomer incorporating strain stiffening. Int. J. Solids Struct. 87, 70–80 (2016)

    Google Scholar 

  44. Lv, X., Liu, L., Liu, Y., Leng, J.: Dynamic performance of dielectric elastomer balloon incorporating stiffening and damping effect. Smart Mater. Struct. 27, 105036 (2018)

    Google Scholar 

  45. Zhu, J., Cai, S., Suo, Z.: Nonlinear oscillation of a dielectric elastomer balloon. Polym. Int. 59, 378–383 (2010)

    Google Scholar 

  46. Cochelin, B., Vergez, C.: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vib. 324, 243–262 (2009)

    Google Scholar 

  47. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.-C.: Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23, 195–216 (2009)

    Google Scholar 

  48. Doedel, E.J., Govaerts, W., Kuznetsov, Y.A., Dhooge, A.: Numerical continuation of branch points of equilibria and periodic orbits. Int. J. Bifurc. Chaos 15, 841–860 (2005)

    MathSciNet  MATH  Google Scholar 

  49. Dankowicz, H., Schilder, F.: An extended coninuation problem for bifurcation analysis in the presence of constraints. J. Comput. Nonlinear Dyn. 6, 031003 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11802222), the Fundamental Research Funds for Central Universities (Grant No. G2019KY05104), and the 111 Project (No. BP0719007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junshi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, H. Voltage-induced beating vibration of a dielectric elastomer membrane. Nonlinear Dyn 100, 2225–2239 (2020). https://doi.org/10.1007/s11071-020-05678-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05678-4

Keywords

Navigation