Skip to main content
Log in

State-dependent asynchronous intermittent control for IT2 T–S fuzzy interconnected systems under deception attacks

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a class of interval type-2 Takagi–Sugeno (IT2 T–S) fuzzy interconnected system subjected to deception attacks is investigated by developing a state-dependent asynchronous intermittent control scheme. Whether control actions should be imposed or not is decided by an asynchronous activated mechanism in each subsystem, which contains two exponential attenuation surfaces and three state-dependent subregions. Besides, a switching controller is designed, which includes three sub-controllers with respect to above three subregions. Specially, this new type controller not only can avoid potential chattering behaviors resulted from the switchings among sub-controllers, but also can describe the attack signals as an intermittent nonlinear term to decrease the potential success rate of cyber intrusions. Moreover, under the concept of exponentially input-to-state stable (EISS), the concerned system is verified to be EISS by transforming the attack signals into a residual term. Finally, the validity of the proposed control strategy is verified by two illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Reppa, V., Polycarpou, M.M., Panayiotou, C.G.: Distributed sensor fault diagnosis for a network of interconnected cyber physical systems. IEEE Trans. Control Netw. Syst. 2(1), 11–23 (2015)

    Article  MathSciNet  Google Scholar 

  2. Massoud Amin, S., Wollenberg, B.F.: Toward a smart grid: power delivery for the 21st century. IEEE Power Energy Mag. 3(5), 34–41 (2005)

    Article  Google Scholar 

  3. Su, A., Eichi, H., Zeng, W., Chow, M.Y.: A survey on the electrification of transportation in a smart grid environment. IEEE Trans. Ind. Inf. 8(1), 1–10 (2012)

    Article  Google Scholar 

  4. Kumar, V., Rus, D., Sukhatme, G.S.: “Networked robots,” in Springer Handbook Robotics, pp. 943–958. Springer, New York (2008)

    Book  Google Scholar 

  5. Antonelli, G.: Interconnected dynamic systems: an overview on distributed control. IEEE Control Syst. Mag. 33(1), 76–88 (2013)

    Article  MathSciNet  Google Scholar 

  6. Du, Z., Yan, Z., Zhao, Z.: Interval type-2 fuzzy tracking control for nonlinear systems via sampled-data controller. Fuzzy Sets Syst. 356, 92–112 (2019)

    Article  MathSciNet  Google Scholar 

  7. Rong, N., Wang, Z.: Fixed-time stabilization for IT2 T–S fuzzy interconnected systems via event-triggered mechanism: an exponential gain method. IEEE Trans. Fuzzy Syst. 28(2), 246–258 (2020)

    Article  Google Scholar 

  8. Du, Z., Kao, Y., Park, Ju H.: New results for sampled-data control of interval type-2 fuzzy nonlinear systems. J. Frankl. Inst. 357(1), 121–141 (2020)

    Article  MathSciNet  Google Scholar 

  9. An, L., Yang, G.H.: Decentralized adaptive fuzzy secure control for nonlinear uncertain interconnected systems against intermittent dos attacks. IEEE Trans. Cybern. 49(3), 827–838 (2019)

    Article  Google Scholar 

  10. Alireza, A., Arman, S., Parisa, F., et al.: Resilient control design for load frequency control system under false data injection attacks. IEEE Trans. Ind. Electron. (to be published). https://doi.org/10.1109/TIE.2019.2944091

  11. Jin, X., Haddad, W.M., Yucelen, T.: An adaptive control architecture for mitigating sensor and actuator attacks in cyber-physical systems. IEEE Trans. Autom. Control 62(11), 6058–6064 (2017)

    Article  MathSciNet  Google Scholar 

  12. Mahmoud, M.S., Hamdan, M.M., Baroudi, U.A.: Modeling and control of cyber-physical systems subject to cyber attacks: a survey of recent advances and challenges. Neurocomputing 338, 101–115 (2019)

    Article  Google Scholar 

  13. Anguluri, R., Katewa, V., Pasqualetti, F.: Attack detection in stochastic interconnected systems: centralized vs decentralized detectors. In: IEEE Conference on Decision and Control (CDC), IEEE, 2018, pp. 4541–4546 (2018)

  14. Barboni, A., Rezaee, H., Boem, F., Parisini, T.: Distributed detection of covert attacks for interconnected systems. In: 18th European Control Conference (ECC), IEEE, pp. 2240–2245 (2019)

  15. Ding, S., Xie, X., Liu, Y.: Event-triggered static/dynamic feedback control for discrete-time linear systems. Information Sciences 524, 33–45 (2020)

    Article  MathSciNet  Google Scholar 

  16. Gawthrop, P.J., Wang, L.: Event-driven intermittent control. Int. J. Control 82(12), 2235–2248 (2009)

    Article  MathSciNet  Google Scholar 

  17. Gawthrop, P., Loram, I., Lakie, M., Gollee, H.: Intermittent control: a computational theory of human control. Biol. Cybern. 104(1–2), 31–51 (2011)

    Article  MathSciNet  Google Scholar 

  18. Chen, S., Song, G., Zheng, B.C., Li, T.: Finite-time synchronization of coupled reactionCdiffusion neural systems via intermittent control. Automatica 109, 108564 (2019)

    Article  MathSciNet  Google Scholar 

  19. Xiao, Q., Lewis, F.L., Zeng, Z.: Containment control for multiagent systems under two intermittent control schemes. IEEE Trans. Autom. Control 64(3), 1236–1243 (2019)

    Article  MathSciNet  Google Scholar 

  20. Zhang, Z.M., He, Y., Wu, M., Wang, Q.G.: Exponential synchronization of neural networks with time-varying delays via dynamic intermittent output feedback control. IEEE Trans. Syst. Man Cybern. Syst. 49(3), 612–622 (2019)

    Article  Google Scholar 

  21. Li, X., Fang, J.A., Li, H.: Exponential stabilisation of stochastic memristive neural networks under intermittent adaptive control. IET Control Theory Appl. 11(15), 2432–2439 (2017)

    Article  MathSciNet  Google Scholar 

  22. Chen, H., Shi, P., Lim, C.C.: Cluster synchronization for neutral stochastic delay networks via intermittent adaptive control. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3246–3259 (2019)

    Article  MathSciNet  Google Scholar 

  23. Liu, X., Chen, T.: Synchronization of complex networks via aperiodically intermittent pinning control. IEEE Trans. Autom. Control 60(12), 3316–3321 (2015)

    Article  MathSciNet  Google Scholar 

  24. Fan, Y., Huang, X., et al.: Aperiodically intermittent control for quasi-synchronization of delayed memristive neural networks: an interval matrix and matrix measure combined method. IEEE Trans. Syst. Man Cybern. Syst. 49(11), 2254–2265 (2019)

    Article  Google Scholar 

  25. Zhang, Z., Chen, S., Su, H.: Scaled consensus of second-order nonlinear multiagent systems with time-varying delays via aperiodically intermittent control. IEEE Trans. Cybern. (to be published). https://doi.org/10.1109/TCYB.2018.2883793

  26. Guan, Z.H., Yue, D., et al.: Cluster synchronization of coupled genetic regulatory networks with delays via aperiodically adaptive intermittent control. IEEE Trans. Nanobiosci. 16(7), 585–599 (2017)

    Article  Google Scholar 

  27. Wang, Q., He, Y., Tan, G., Wu, M.: State-dependent intermittent control of non-linear systems. IET Control Theory Appl. 11(12), 1884–1893 (2017)

    Article  MathSciNet  Google Scholar 

  28. Ding, S., Wang, Z., Zhang, H.: Quasi-synchronization of delayed memristive neural networks via region-partitioning-dependent intermittent control. IEEE Trans. Cybern. 49(12), 4066–4077 (2019)

    Article  Google Scholar 

  29. Lam, H.K., Seneviratne, L.D.: Stability analysis of interval type-2 fuzzy-model-based control systems. IEEE Trans. Cybern. 38(3), 617–628 (2008)

    Article  Google Scholar 

  30. Zeng, Y., Lam, Hak-Keung, Wu, L.: Hankel-norm-based model reduction for stochastic discrete-time nonlinear systems in interval type-2 T–S fuzzy framework. IEEE Trans. Cybern. (to be published). https://doi.org/10.1109/TFUZZ.2019.2900844

  31. Li, X.J., Yan, J.J., Yang, G.H.: Adaptive fault estimation for TS fuzzy interconnected systems based on persistent excitation condition via reference signals. IEEE Trans. Cybern. 49(8), 2822–2834 (2019)

    Article  Google Scholar 

  32. Sontag, E.D.: Comments on integral variants of ISS. Syst. Control Lett. 34, 93–100 (1998)

    Article  MathSciNet  Google Scholar 

  33. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)

    Article  MathSciNet  Google Scholar 

  34. Mazo, Jr, M., Anta, A., Tabuada, P.: An ISS self-triggered implementation of linear controllers. Automatica 46(8), 1310–1314 (2010)

    Article  MathSciNet  Google Scholar 

  35. Zhang, Z., Niu, Y., Song, J.: Input-to-state stabilization of interval type-2 fuzzy systems subject to cyber attacks: an observer-based adaptive sliding mode approach. IEEE Trans. Fuzzy Syst. (to be published). https://doi.org/10.1109/TFUZZ.2019.2902105

  36. Wu, Z., Shi, P., Su, H., Chu, J.: Local synchronization of chaotic neural networks with sampled-data and saturating actuators. IEEE Trans. Cybern. 44(12), 2635–2645 (2014)

    Article  Google Scholar 

  37. Ding, S., Wang, Z., Zhang, H.: Event-triggered stabilization of neural networks with time-varying switching gains and input saturation. IEEE Trans. Neural Netw. Learn. Syst. 29(10), 5045–5056 (2018)

    Article  MathSciNet  Google Scholar 

  38. Ohtake, H., Tanaka, K., Wang, H.O.: Fuzzy modeling via sector nonlinearity concept. Integr. Comput.-Aid. Eng. 10(4), 333–341 (2003)

    Article  Google Scholar 

  39. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanshan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Natural Science Foundation of China under Grant 61973070, 61433004 and Grant 61627809, LiaoNing Revitalization Talents Program under Grant XLYC1802010, and in part by SAPI Fundamental Research Funds under Grant 2018ZCX22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, N., Wang, Z. State-dependent asynchronous intermittent control for IT2 T–S fuzzy interconnected systems under deception attacks. Nonlinear Dyn 100, 3433–3448 (2020). https://doi.org/10.1007/s11071-020-05669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05669-5

Keywords

Navigation