Skip to main content
Log in

Bifurcations and excitability in the temperature-sensitive Morris–Lecar neuron

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The neuronal excitability related to the transition between firing and resting states is a basic and important dynamic behavior which has different bifurcation characteristics and spiking frequency responses. In this work, we study the response dynamics and the excitability of a Morris–Lecar neuron for two temperature-sensitive ion channels, calcium and leak current, respectively. The codimension-1 bifurcations and the frequency–response curves for different temperatures show that the neuronal excitability is from Class II to I with increasing temperature in the case of the temperature-sensitive calcium current but is from Class I to II for the case of the leak current. The further extensive codimension-2 bifurcations uncover that the neurons undergo different routes of the neuronal dynamics under increasing external current for different temperatures even the same neuronal excitability. These results provide insight into understanding the effect of temperature on the neuronal dynamics and response behaviors with the diversity of temperature-sensitive ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ma, J., Jun, T.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    MathSciNet  Google Scholar 

  2. Alexander, G.D., Aurel, A.L., Jonathan, D.V.: Information theory in neuroscience. J. Comput. Neurosci. 30(1), 1–5 (2011)

    Google Scholar 

  3. Wang, L.F., Wang, H.T., Yu, L.C., Chen, Y.: Spike-threshold variability originated from separatrix-crossing in neuronal dynamics. Sci. Rep. 6, 31719 (2016)

    Google Scholar 

  4. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos Appl. Sci. Eng. 10(6), 1171–1266 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Rudiger, K., Fabrizio, G.: Burst firing in sensory systems. Nat. Rev. Neurosci. 5(1), 13–23 (2004)

    Google Scholar 

  6. Lu, Z.S., Chen, L.N., Duan, L.X.: Bifurcation analysis of mixed bursting in the pre-Botzinger complex. Appl. Math. Model. 67, 234–251 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Li, Y.Y., Gu, H.G., Ding, X.L.: Bifurcations of enhanced neuronal bursting activities induced by the negative current mediated by inhibitory autapse. Nonlinear Dyn. 97(4), 2091–2105 (2019)

    Google Scholar 

  8. Hodgkin, A.L.: The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol. 107(2), 165–181 (1948)

    Google Scholar 

  9. Wang, H.T., Wang, L.F., Yu, L.C., et al.: Response of Morris–Lecar neuron to various stimuli. Phys. Rev. E 83, 021915 (2011)

    Google Scholar 

  10. Izhikevich, E.M.: Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge (2007)

    Google Scholar 

  11. Meng, X.G., Huguet, G., Rinzel, J.: Type III excitability, slope sensitivity and coincidence detection. Discrete Contin. Dyn. A 32(8), 2729–2757 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Tsumoto, K., Kitajima, H., Yoshinaga, T., et al.: Bifurcations in Morris–Lecar neuron model. Neurocomputing 69(4), 293–316 (2006)

    Google Scholar 

  13. Tsuji, S., Ueta, T., Kawakami, H., et al.: Bifurcations in two-dimensional hindmarsh-rose type model. Int. J. Bifurc. Chaos 17(3), 985–998 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Liu, C.M., Liu, X.L., Liu, S.Q.: Bifurcation analysis of a Morris–Lecar neuron model. Biol. Cybern. 108(1), 75–84 (2014)

    MathSciNet  Google Scholar 

  15. Calim, A., Hovel, P., Ozer, M., et al.: Chimera states in networks of type-I Morris–Lecar neurons. Phys. Rev. E 98(6), 062217 (2018)

    MathSciNet  Google Scholar 

  16. Zhao, Z.G., Gu, H.G.: Transitions between classes of neuronal excitability and bifurcations induced by autapse. Sci. Rep. UK 7, 6760 (2017)

    Google Scholar 

  17. Xie, Y., Chen, L., Kang, Y.M., et al.: Controlling the onset of Hopf bifurcation in the Hodgkin–Huxley model. Phys. Rev. E 77(6), 061921 (2008)

    MathSciNet  Google Scholar 

  18. Li, B., He, Q.: Bifurcation analysis of a two-dimensional discrete Hindmarsh–Rose type model. Adv. Differ. Equ. 124, 1–7 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Zhao, Z.G., Li, L., Gu, H.G.: Dynamical mechanism of hyperpolarization-activated non-specific cation current induced resonance and spike-timing precision in a neuronal model. Front. Cell. Neurosci. 12, 62 (2018)

    Google Scholar 

  20. Loos, H.V.D., Glaser, E.M.: Autapses in neocortex cerebri: synapses between a pyramidal cell’s axon and its own dendrites. Brain Res. 48, 355–360 (1972)

    Google Scholar 

  21. Song, X.L., Wang, H.T., Chen, Y.: Autapse-induced firing pattern transitions in the Morris–Lecar neuron model. Nonlinear Dyn. 96, 2341–2350 (2019)

    Google Scholar 

  22. Hille, B.: Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  23. OLeary, T., Marder, E.: Temperature-robust neural function from activity-dependent ion channel regulation. Curr. Biol. 26(21), 2935–2941 (2016)

    Google Scholar 

  24. Wang, L.F., Jia, F., Liu, X.Z., et al.: Temperature effects on information capacity and energy efficiency of Hodgkin–Huxley neuron. Chin. Phys. Lett. 32(10), 108701 (2015)

    Google Scholar 

  25. Caplan, J.S., Williams, A.H., Marder, E.: Many parameter sets in a multicompartment model oscillator are robust to temperature perturbations. J. Neurosci. 34(14), 4963–4975 (2014)

    Google Scholar 

  26. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29(2), 141–164 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia (2002)

    MATH  Google Scholar 

  28. Morris, C., Lecar, H.: Voltage oscillations in the barancle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Google Scholar 

  29. Prescott, S.A., De Koninck, Y., Sejnowski, T.J.: Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Comput. Biol. 4(10), e1000198 (2008)

    MathSciNet  Google Scholar 

  30. Rinberg, A., Taylor, A.L., Marder, E.: The effects of temperature on the stability of a neuronal oscillator. PLoS Comput. Biol. 9(1), e1002857 (2013)

    Google Scholar 

  31. Tang, L.S., Goeritz, M.L., Caplan, J.S., et al.: Precise temperature compensation of phase in a rhythmic motor pattern. PLoS Biol. 8(1), e1000469 (2010)

    Google Scholar 

  32. Tang, L.S., Taylor, A.L., Rinberg, A., Marder, E.: Robustness of a rhythmic circuit ot short- and long-term temperature changes. J. Neurosci. 32, 10075–10085 (2012)

    Google Scholar 

  33. Caterina, M.J.: Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292(1), R64–R76 (2007)

    Google Scholar 

  34. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Google Scholar 

  35. Wu, F.Q., Wang, C.N., Jin, W.Y., et al.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Phys. A 469, 81–88 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Jia, B., Gu, H.G., Xue, L.: A basic bifurcation structure from bursting to spiking of injured nerve fibers in a two-dimensional parameter space. Cogn. Neurodyn. 11(2), 189–200 (2017)

    Google Scholar 

  37. Gu, H.G.: Different bifurcation scenarios of neural firing patterns observed in the biological experiment on identical pacemakers. Int. J. Bifurc. Chaos 23(12), 1350195 (2013)

    MathSciNet  Google Scholar 

  38. Gu, H.G., Jia, B., Chen, G.R.: Experimental evidence of a chaotic region in a neural pacemaker. Phys. Lett. A 377(9), 718–720 (2013)

    Google Scholar 

  39. Guo, D., Chen, M., Perc, M., et al.: Firing regulation of fast-spiking interneurons by autaptic inhibition. EPL (Europhys. Lett.) 114(3), 30001 (2016)

    Google Scholar 

  40. Pekala, D., Szkudlarek, H., Raastad, M.: Typical gray matter axons in mammalian brain fail to conduct action potentials faithfully at fever-like temperatures. Physiol. Rep. 4(19), e12981 (2016)

    Google Scholar 

  41. Song, X.L., Wang, H.T., Chen, Y., Lai, Y.C.: Emergence of an optimal temperature in action potential propagation through myelinated axons. Phys. Rev. E 100, 032416 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China with Grant No. 11872084 (ZQY), No. 11675008 (YC), and No. 21434001 (YC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoqin Yang.

Ethics declarations

Conflict of interest

All the authors declare that there is no any conflict with the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, M., Song, X., Yang, Z. et al. Bifurcations and excitability in the temperature-sensitive Morris–Lecar neuron. Nonlinear Dyn 100, 2687–2698 (2020). https://doi.org/10.1007/s11071-020-05667-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05667-7

Keywords

Navigation