Skip to main content

Advertisement

Log in

Multilayer brain network combined with deep convolutional neural network for detecting major depressive disorder

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

As a global and grievous mental disease, major depressive disorder (MDD) has received much attention. Accurate detection of MDD via physiological signals represents an urgent research topic. Here, a frequency-dependent multilayer brain network, combined with deep convolutional neural network (CNN), is developed to detect the MDD. Multivariate pseudo Wigner distribution is firstly introduced to extract the time-frequency characteristics from the multi-channel EEG signals. Then multilayer brain network is constructed, with each layer corresponding to a specific frequency band. Such multilayer framework is in line with the nature of the workings of the brain, and can effectively characterize the brain state. Further, a multilayer deep CNN architecture is designed to study the brain network topology features, which is finally used to accurately detect MDD. The experimental results on a publicly available MDD dataset show that the proposed approach is able to detect MDD with state-of-the-art accuracy of 97.27%. Our approach, combining multilayer brain network and deep CNN, enriches the multivariate time series analysis theory and helps to better characterize and recognize the complex brain states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kessler, R.C., Berglund, P., Demler, O., et al.: The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA J. Am. Med. Assoc. 289, 3095–105 (2003)

    Google Scholar 

  2. Hasin, D.S., Goodwin, R.D., Stinson, F.S., Grant, B.F.: Epidemiology of major depressive disorder: results from the National Epidemiologic Survey on alcoholism and related conditions. Arch. Gen. Psychiatry 62, 1097–1106 (2005)

    Google Scholar 

  3. Xu, D.D., Rao, W.W., Cao, X.L., et al.: Prevalence of major depressive disorder in children and adolescents in China: a systematic review and meta-analysis. J. Affect. Disord. 241, 592–598 (2018)

    Google Scholar 

  4. Miller, A.H., Raison, C.L.: The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 16, 22–34 (2016)

    Google Scholar 

  5. Goldstein, B.I., Shamseddeen, W., Spirito, A., et al.: Substance use and the treatment of resistant depression in adolescents. J. Am. Acad. Child Psychiatry 48, 1182–1192 (2009)

    Google Scholar 

  6. Young, K.D., Siegle, G.J., Zotev, V., Phillips, R., Misaki, M., Yuan, H., Drevets, W.C., Bodurka, J.: Randomized clinical trial of real-time fMRI amygdala neurofeedback for major depressive disorder: effectson symptoms and autobiographical memory recall. Am. J. Psychiatry 174, 748–755 (2017)

    Google Scholar 

  7. Dunlop, B.W., Rajendra, J.K., Craighead, W.E., et al.: Functional connectivity of the subcallosal cingulate cortex and differential outcomes to treatment with cognitive-behavioral therapy or antidepressant medication for major depressive disorder. Am. J. Psychiatry 174, 533–545 (2017)

    Google Scholar 

  8. Lin, I.M., Fan, S.Y., Yen, C.F., et al.: Heart rate variability biofeedback increased autonomic activation and improved symptoms of depression and insomnia among patients with major depression disorder. Clin. Psychopharmacol. Neurosci. 17, 222–232 (2019)

    Google Scholar 

  9. Mestanikova, A., Mestanik, M., Ondrejka, I., et al.: Complex cardiac vagal regulation to mental and physiological stress in adolescent major depression. J. Affect. Disord. 249, 234–241 (2019)

    Google Scholar 

  10. Mahato, S., Paul, S.: Detection of major depressive disorder using linear and non-linear features from EEG signals. Microsyst. Technol. 25, 1065–1076 (2018)

    Google Scholar 

  11. Mumtaz, W., Xia, L., Ali, S.S.A., Yasin, M.A.M., Hussain, M., Malik, A.S.: Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD). Biomed. Signal Process. 31, 108–115 (2017)

    Google Scholar 

  12. Mumtaz, W., Ali, S.S.A., Yasin, M.A.M., Malik, A.S.: A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD). Med. Biol. Eng. Comput. 56, 233–246 (2018)

    Google Scholar 

  13. Mumtaz, W., Xia, L., Mohd Yasin, M.A., Azhar Ali, S.S., Malik, A.S.: A wavelet-based technique to predict treatment outcome for major depressive disorder. PLoS ONE 12, e0171409 (2017)

    Google Scholar 

  14. Pizzagalli, D.A., Webb, C.A., Dillon, D.G., et al.: Pretreatment rostral anterior cingulate cortex theta activity in relation to symptom improvement in depression: a randomized clinical trial. JAMA Psychiatry 75, 547–554 (2018)

    Google Scholar 

  15. Ahmadlou, M., Adeli, H., Adeli, A.: Fractality analysis of frontal brain in major depressive disorder. Int. J. Psychophysiol. 85, 206–211 (2012)

    Google Scholar 

  16. Goldschmied, J.R., Cheng, P., Armitage, R., Deldin, P.J.: A preliminary investigation of the role of slow-wave activity in modulating waking EEG theta as a marker of sleep propensity in major depressive disorder. J. Affect. Disord. 257, 504–509 (2019)

    Google Scholar 

  17. Murphy, O.W., Hoy, K.E., Wong, D., Bailey, N.W., Fitzgerald, P.B., Segrave, R.A.: Individuals with depression display abnormal modulation of neural oscillatory activity during working memory encoding and maintenance. Biol. Psychol. 107766 (2019)

  18. Pachori, R.B., Sircar, P.: EEG signal analysis using FB expansion and second-order linear TVAR process. Signal Process. 88, 415–420 (2008)

    MATH  Google Scholar 

  19. Sharma, M., Goyal, D., Achuth, P.V., Acharya, U.R.: An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank. Comput. Biol. Med. 98, 58–75 (2018)

    Google Scholar 

  20. Riaz, F., Hassan, A., Rehman, S., Niazi, I.K., Dremstrup, K.: EMD-based temporal and spectral features for the classification of EEG signals using supervised learning. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 28–35 (2016)

    Google Scholar 

  21. Tian, G.L., Liu, Y.: Simple convolutional neural network for left-right hands motor imagery EEG signals classification. Int. J. Cogn. Inform. Natural Intell. 13, 36–49 (2019)

    Google Scholar 

  22. Bhattacharyya, A., Sharma, M., Pachori, R.B., Sircar, P., Acharya, U.R.: A novel approach for automated detection of focal EEG signals using empirical wavelet transform. Neural Comput. Appl. 29, 47–57 (2018)

    Google Scholar 

  23. Ahrabian, A., Looney, D., Stankovic, L., Mandic, D.P.: Synchrosqueezing-based time-frequency analysis of multivariate data. Signal Process. 106, 331–341 (2015)

    Google Scholar 

  24. de Lima, G.V.L., Saito, P.T.M., Lopes, F.M., Bugatti, P.H.: Classification of texture based on bag-of-visual-words through complex networks. Expert Syst. Appl. 133, 215–224 (2019)

    Google Scholar 

  25. Li, J., Jiang, H., Yu, Z., Hu, C.: Dynamical analysis of rumor spreading model in homogeneous complex networks. Appl. Math. Comput. 359, 374–385 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Wang, H., Wang, J., Small, M., Moore, J.M.: Review mechanism promotes knowledge transmission in complex networks. Appl. Math. Comput. 340, 113–125 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Morabito, F.C., Campolo, M., Labate, D., et al.: A longitudinal EEG study of Alzheimer’s disease progression based on a complex network approach. Int. J. Neural Syst. 25, 1550005 (2015)

    Google Scholar 

  28. Gao, Z., Dang, W., Liu, M., Guo, W., Ma, K., Chen, G.: Classification of EEG signals on VEP-based BCI systems with broad learning. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2020.2964684

    Article  Google Scholar 

  29. Lachaux, J.P., Rodriguez, E., Martinerie, J., Varela, F.J.: Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999)

    Google Scholar 

  30. Wang, M., El-Fiqi, H., Hu, J.K., Abbass, H.A.: Convolutional neural networks using dynamic functional connectivity for EEG-based person identification in diverse human states. IEEE Trans. Inf. Forensic Secur. 14, 3259–3272 (2019)

    Google Scholar 

  31. Sole-Ribalta, A., De Domenico, M., Gomez, S., Arenas, A.: Random walk centrality in interconnected multilayer networks. Physica D 323, 73–79 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Martincic-Ipsic, S., Margan, D., Mestrovic, A.: Multilayer network of language: a unified framework for structural analysis of linguistic subsystems. Phys. A 457, 117–128 (2016)

    Google Scholar 

  33. Dang, W.D., Gao, Z.K., Lv, D.M., Liu, M.X., Cai, Q., Hong, X.L.: A novel time-frequency multilayer network for multivariate time series analysis. New J. Phys. 20, 125005 (2018)

    Google Scholar 

  34. Sahneh, F.D., Scoglio, C., Van Mieghem, P.: Generalized epidemic mean-field model for spreading processes over multilayer complex networks. IEEE-ACM Trans. Netw. 21, 1609–1620 (2013)

    Google Scholar 

  35. Gao, Z., Dang, W., Mu, C., Yang, Y., Li, S., Grebogi, C.: A novel multiplex network-based sensor information fusion model and its application to industrial multiphase flow system. IEEE Trans. Ind. Inform. 14, 3982–3988 (2018)

    Google Scholar 

  36. Gao, Z., Zhang, S., Dang, W., Li, S., Cai, Q.: Multilayer network from multivariate time series for characterizing nonlinear flow behavior. Int. J. Bifurc. Chaos 27, 1750059 (2017)

    Google Scholar 

  37. Buldu, J.M., Porter, M.A.: Frequency-based brain networks: from a multiplex framework to a full multilayer description. Netw. Neurosci. 2, 418–441 (2018)

    Google Scholar 

  38. Lin, E., Kuo, P.H., Liu, Y.L., Yu, Y.W.Y., Yang, A.C., Tsai, S.J.: A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers. Front. Psychiatry 9, 290 (2018)

    Google Scholar 

  39. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26, 3142–3155 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder–decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017)

    Google Scholar 

  41. Dang, W.D., Gao, Z.K., Hou, L.H., Lv, D.M., Qiu, S.M., Chen, G.R.: A novel deep learning framework for industrial multiphase flow characterization. IEEE Trans. Ind. Inform. 15, 5954–5962 (2019)

    Google Scholar 

  42. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Aaai, Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Proceedings of AAAI Conference on Artifiial Intelligence (2017)

  43. Gao, Z.K., Wang, X.M., Yang, Y.X., Mu, C.X., Cai, Q., Dang, W.D., Zuo, S.Y.: EEG-based spatio-temporal convolutional neural network for driver fatigue evaluation. IEEE Trans. Neural Netw. Learn. Syst. 30, 2755–2763 (2019)

    Google Scholar 

  44. Lilly, J.M., Olhede, S.C.: Analysis of modulated multivariate oscillations. IEEE Trans. Signal Process. 60, 600–612 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Myers, M.H., Padmanabha, A., Hossain, G., de Jongh Curry, A.L., Blaha, C.D.: Seizure prediction and detection via phase and amplitude lock values. Front. Hum. Neurosci. 10, 80 (2016)

    Google Scholar 

  46. A. P. Association: Diagnostic and Statistical Manual of Mental Disorders (DSM-5). American Psychiatric Pub, Philadelphia (2013)

  47. Dien, J.J.B.R.M.: Instruments, and computers, issues in the application of the average reference: review, critiques, and recommendations. Behav. Res. Methods Instrum. Comput. 30, 34–43 (1998)

    Google Scholar 

  48. Jasper, H.H.J.E.C.N.: The ten-twenty electrode system of the international federation. Neurophysiology 10, 370–375 (1958)

    Google Scholar 

  49. Roh, S.C., Park, E.J., Shim, M., Lee, S.H.: EEG beta and low gamma power correlates with inattention in patients with major depressive disorder. J. Affect. Disord. 204, 124–130 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants Nos. 61922062 and 61873181.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongke Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, W., Gao, Z., Sun, X. et al. Multilayer brain network combined with deep convolutional neural network for detecting major depressive disorder. Nonlinear Dyn 102, 667–677 (2020). https://doi.org/10.1007/s11071-020-05665-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05665-9

Keywords

Navigation