Skip to main content

Advertisement

Log in

Population rate coding in recurrent neuronal networks consisting of neurons with mixed excitatory–inhibitory synapses

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Neural coding is a key problem in neuroscience aimed to understand the information processing mechanism in brain. Among the classical theories of neural coding, population rate coding has been studied widely in many works. In computational studies, neurons are usually classified into excitatory or inhibitory ones. Excitatory neurons have excitatory output synapses, and inhibitory neurons have inhibitory output synapses. However, according to physiological observations, neurons potentially have both types of output synapses. Thus, in this paper, neuronal networks consisting of neurons with mixed excitatory–inhibitory synapses are constructed to investigate the population rate coding fidelity of neuronal systems. It is revealed that, under intermediate values of recurrent probability, inhibitory–excitatory strength ratio, and noise intensity, the performance of population rate coding could be improved by both excitatory synaptic strength and synaptic time constant. It is indicated that external stimuli can be encoded in the form of population firing rate by the studied neuronal networks very well. What is more exciting is that we find the neuronal networks considered in our work have higher coding efficiency than the traditional ones. Therefore, neurons with mixed excitatory–inhibitory synapses may be much more rational.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. deCharms, R.C., Zador, A.: Neural representation and the cortical code. Annu. Rev. Neurosci. 23(1), 613–647 (2000)

    Google Scholar 

  2. Newsome, W.T., Britten, K.H., Movshon, J.A.: Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989)

    Google Scholar 

  3. Georgopoulos, A., Taira, M., Lukashin, A.: Cognitive neurophysiology of the motor cortex. Science 260(5104), 47–52 (1993)

    Google Scholar 

  4. Shadlen, M.N., Newsome, W.T.: Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4(4), 569–579 (1994)

    Google Scholar 

  5. Marsalek, P., Koch, C., Maunsell, J.H.R.: On the relationship between synaptic input and spike output jitter in individual neurons. Proc. Nat. Acad. Sci. USA 94(2), 735–40 (1997)

    Google Scholar 

  6. Aertsen, A., Diesmann, M., Gewaltig, M.: Propagation of synchronous spiking activity in feedforward neural networks. J. Physiol. Paris 90(3), 243–247 (1996)

    Google Scholar 

  7. Riehle, A., Grün, S., Diesmann, M., Aertsen, A.: Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278(5345), 1950–1953 (1997)

    Google Scholar 

  8. Diesmann, M., Gewaltig, M.O., Aertsen, A.: Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529–533 (1999)

    Google Scholar 

  9. Litvak, V., Sompolinsky, H., Segev, I., Abeles, M.: On the transmission of rate code in long feedforward networks with excitatory–inhibitory balance. J. Neurosci. 23(7), 3006–3015 (2003)

    Google Scholar 

  10. Wang, S., Wang, W., Liu, F.: Propagation of firing rate in a feed-forward neuronal network. Phys. Rev. Lett. 96, 018103 (2006)

    Google Scholar 

  11. Masuda, N., Aihar, K.: Bridging rate coding and temporal spike coding by effect of noise. Phys. Rev. Lett. 88, 248101 (2002)

    Google Scholar 

  12. Masuda, N., Aihara, K.: Duality of rate coding and temporal coding in multilayered feedforward networks. Neural Comput. 15, 103–125 (2003)

    MATH  Google Scholar 

  13. Kumar, A., Rotter, S., Aertsen, A.: Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. J. Neurosci. 28(20), 5268–5280 (2008)

    Google Scholar 

  14. Kumar, A., Rotter, S., Aertsen, A.: Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat. Rev. Neurosci. 11, 615–627 (2010)

    Google Scholar 

  15. DeMarse, T.B., Pan, L., Alagapan, S., Brewer, G.J., Wheeler, B.C.: Feed-forward propagation of temporal and rate information between cortical populations during coherent activation in engineered in vitro networks. Front. Neural Circuits 10, 32 (2016)

    Google Scholar 

  16. Adrian, E.D.: The Basis of Sensation. W W Norton and Co, New York (1928)

    Google Scholar 

  17. Kostal, L., Lansky, P., Rospars, J.P.: Review article: neuronal coding and spiking randomness. Eur. J. Neurosci. 26(10), 2693–2701 (2007)

    Google Scholar 

  18. Shadlen, M.N., Newsome, W.T.: The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18(10), 3870–3896 (1998)

    Google Scholar 

  19. Brunel, N., Hakim, V.: Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11(7), 1621–1671 (1999)

    Google Scholar 

  20. Knight, B.W.: Dynamics of encoding in neuron populations: some general mathematical features. Neural Comput. 12(3), 473–518 (2000)

    Google Scholar 

  21. Gerstner, W.: Population dynamics of spiking neurons: fast transients, asynchronous states, and locking. Neural Comput. 12(1), 43–89 (2000)

    MathSciNet  Google Scholar 

  22. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  23. Kandel, E., Schwartz, J., Jessell, T.: Principles of Neural Science. Elsevier, Amsterdam (1991)

    Google Scholar 

  24. Masuda, N., doiron, B., Longtin, A., Aihara, K.: Coding of temporally varying signals in networks of spiking neurons with global delayed feedback. Neural Comput. 17, 2139–2175 (2005)

    MathSciNet  MATH  Google Scholar 

  25. van Rossum, M.C.W., Turrigiano, G.G., Nelson, S.B.: Fast propagation of firing rates through layered networks of noisy neurons. J. Neurosci. 22(5), 1956–1966 (2002)

    Google Scholar 

  26. Vogels, T.P., Abbott, L.F.: Signal propagation and logic gating in networks of integrate-and-fire neurons. J. Neurosci. 25(46), 10786–10795 (2005)

    Google Scholar 

  27. Wang, S., Zhou, C.: Information encoding in an oscillatory network. Phys. Rev. E 79, 061910 (2009)

    MathSciNet  Google Scholar 

  28. Guo, D., Li, C.: Population rate coding in recurrent neuronal networks with unreliable synapses. Cognit. Neurodyn. 6(1), 75–87 (2012)

    MathSciNet  Google Scholar 

  29. van Vreeswijk, C., Sompolinsky, H.: Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274(5293), 1724–1726 (1996)

    Google Scholar 

  30. Salinas, E., Sejnowski, T.J.: Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2, 539–550 (2001)

    Google Scholar 

  31. Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8(3), 183–208 (2000)

    MATH  Google Scholar 

  32. Mehring, C., Hehl, U., Kubo, M., Diesmann, M., Aertsen, A.: Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biol. Cybern. 88, 395–408 (2003)

    MATH  Google Scholar 

  33. Jn, T., Fukai, T.: Local cortical circuit model inferred from power-law distributed neuronal avalanches. J. Comput. Neurosci. 22(3), 301–312 (2007)

    MathSciNet  Google Scholar 

  34. Kremkow, J., Aertsen, A., Kumar, A.: Gating of signal propagation in spiking neural networks by balanced and correlated excitation and inhibition. J. Neurosci. 30(47), 15760–15768 (2010)

    Google Scholar 

  35. Vogels, T.P., Abbott, L.F.: Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nat. Neurosci. 24, 483 (2009)

    Google Scholar 

  36. Mayor, J., Gerstner, W.: Transient information flow in a network of excitatory and inhibitory model neurons: role of noise and signal autocorrelation. J. Physiol. Paris 98(4), 417–428 (2004)

    Google Scholar 

  37. Han, R., Wang, J., Yu, H., Deng, B., Wei, X., Qin, Y., Wang, H.: Intrinsic excitability state of local neuronal population modulates signal propagation in feed-forward neural networks. Chaos Interdiscip. J. Nonlinear Sci. 25(4), 043108 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Barral, J., Wang, X.J., Reyes, A.: Propagation of spike timing and firing rate in feedforward networks reconstituted in vitro. bioRxiv (2017)

  39. Sun, X., Li, G.: Synchronization transitions induced by partial time delay in a excitatory-inhibitory coupled neuronal network. Nonlinear Dyn. 89(4), 2509–2520 (2017). https://doi.org/10.1007/s11071-017-3600-4

    Article  MathSciNet  Google Scholar 

  40. Li, H., Sun, X., Xiao, J.: Degree of synchronization modulated by inhibitory neurons in clustered excitatory-inhibitory recurrent networks. EPL (Europhys. Lett.) 121(1), 10003 (2018)

    Google Scholar 

  41. Root, D.H., Mejias-Aponte, C.A., Zhang, S., Wang, H.L., Hoffman, A.F., Lupica, C.R., Morales, M.: Single rodent mesohabenular axons release glutamate and GABA. Nat. Neurosci. 17(11), 1543–1551 (2014). https://doi.org/10.1038/nn.3823

    Article  Google Scholar 

  42. Uchida, N.: Bilingual neurons release glutamate and GABA. Nat. Neurosci. 17, 1432–4 (2014). https://doi.org/10.1038/nn.3840

    Article  Google Scholar 

  43. Shrivastava, A., Triller, A., Sieghart, W.: GABAA receptors: post-synaptic co-localization and cross-talk with other receptors. Front. Cell. Neurosci. 5, 7 (2011)

    Google Scholar 

  44. Kantamneni, S.: Cross-talk and regulation between glutamate and GABAb receptors. Front. Cell. Neurosci. 9, 135 (2015)

    Google Scholar 

  45. Zhang, S., Qi, J., Li, X., Wang, B.J., Hoffman, A., Bonci, A., Lupica, C., Morales, M.: Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat. Neurosci. 18, 386–392 (2015). https://doi.org/10.1038/nn.3945

    Article  Google Scholar 

  46. Saunders, A., Granger, A.J., Sabatini, B.L.: Corelease of acetylcholine and GABA from cholinergic forebrain neurons. eLife (2015). https://doi.org/10.7554/eLife.06412

    Article  Google Scholar 

  47. Tritsch, N., Granger, A., Sabatini, B.: Mechanisms and functions of gaba co-release. Nat. Rev. Neurosci. 17, 139–145 (2016). https://doi.org/10.1038/nrn.2015.21

    Article  Google Scholar 

  48. Granger, A., Mulder, N., Saunders, A., Sabatini, B.: Cotransmission of acetylcholine and GABA. Neuropharmacology 100, 40–46 (2015). https://doi.org/10.1016/j.neuropharm.2015.07.031

    Article  Google Scholar 

  49. Zhu, H., Zou, G., Wang, N., Zhuang, M., Xiong, W., Huang, G.: Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry. Proc. Nat. Acad. Sci. 114(10), 2586–2591 (2017). https://doi.org/10.1073/pnas.1615557114

    Article  Google Scholar 

  50. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952). https://doi.org/10.1113/jphysiol.1952.sp00476

    Article  Google Scholar 

  51. Hansel, D., Mato, G., Meunier, C.: Phase dynamics for weakly coupled Hodgkin-Huxley neurons. EPL (Eur. Lett.) 23(5), 367 (1993)

    Google Scholar 

  52. Stimberg, M., Hoch, T., Obermayer, K.: The effect of background noise on the precision of pulse packet propagation in feed-forward networks. Neurocomputing 70(10), 1824–1828 (2007). computational Neuroscience: Trends in Research 2007

    Google Scholar 

  53. McDonnell, M.D., Ward, L.M.: The benefits of noise in neural systems: bridging theory and experiment. Nat. Rev. Neurosci. 12, 415–425 (2011)

    Google Scholar 

  54. Garrett, D.D., Anthony, M.I.C.L., Grady, R.: Moment-to-moment signal variability in the human brain can inform models of stochastic facilitation now. Nat. Rev. Neurosci. 12, 612 (2011)

    Google Scholar 

  55. Gluckman, B.J., So, P., Netoff, T.I., Spano, M.L., Schiff, S.J.: Stochastic resonance in mammalian neuronal networks. Chaos Interdiscip. J. Nonlinear Sci. 8(3), 588–598 (1998)

    MATH  Google Scholar 

  56. Li, H., Sun, X., Xiao, J.: Stochastic multiresonance in coupled excitable FHN neurons. Chaos Interdiscip. J. Nonlinear Sci. 28, 043113 (2018). https://doi.org/10.1063/1.4997679

    Article  MathSciNet  Google Scholar 

  57. Thorpe, S.I., Fize, D., Marlot, C.: Speed of processing in the human visual system. Nature 381, 520–522 (1996)

    Google Scholar 

  58. Thorpe, S.J., Delorme, A., van Rullen, R.: Spike-based strategies for rapid processing. Neural Netw. Off. J. Int. Neural Netw. Soc. 14(6–7), 715–25 (2001)

    Google Scholar 

  59. van Rullen, R., Thorpe, S.J.: Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput. 13, 1255–1283 (2001)

    MATH  Google Scholar 

  60. Gollisch, T., Meister, M.: Rapid neural coding in the retina with relative spike latencies. Science 319(5866), 1108–1111 (2008)

    Google Scholar 

  61. Olshausen, B.A., Field, D.J.: Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14(4), 481–7 (2004)

    Google Scholar 

  62. Sohal, V., Rubenstein, J.: Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol. Psychiatry 24, 1248–1257 (2019)

    Google Scholar 

  63. Rubenstein, J.L.R., Merzenich, M.M.: Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003)

    Google Scholar 

  64. Markram, K., Markram, H.: The intense world theory—a unifying theory of the neurobiology of autism. Front. Hum. Neurosci. 4, 224 (2010)

    Google Scholar 

  65. Vattikuti, S., Chow, C.: A computational model for cerebral cortical dysfunction in autism spectrum disorders. Biol. Psychiatry 67, 672–8 (2009)

    Google Scholar 

  66. Yizhar, O., Fenno, L., Prigge, M., Schneider-Warme, F., Davidson, T., O’Shea, D., Sohal, V., Goshen, I., Finkelstein, J., Paz, J., Stehfest, K., Fudim, R., Ramakrishnan, C., Huguenard, J., Hegemann, P., Deisseroth, K.: Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–8 (2011). https://doi.org/10.1038/nature10360

    Article  Google Scholar 

  67. Selimbeyoglu, A., Kim, C.K., Inoue, M., Lee, S.Y., Hong, A.S.O., Kauvar, I., Ramakrishnan, C., Fenno, L.E., Davidson, T.J., Wright, M., Deisseroth, K.: Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci. Transl. Med. 9(401), 6733 (2017)

    Google Scholar 

  68. Selten, M., van Bokhoven, H., Nadif, Kasri N.: Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Research 7, 23 (2018)

    Google Scholar 

  69. Ferguson, B.R., Gao, W.J.: PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front. Neural Circuits 12, 37 (2018)

    Google Scholar 

  70. Kang, E., Song, J., Lin, Y., Park, J., Lee, J., Hussani, Q., Gu, Y., Ge, S., Li, W., Hsu, K.S., Berninger, B., Christian, K., Song, H., Ming, G.: Interplay between a mental disorder risk gene and developmental polarity switch of gaba action leads to excitation-inhibition imbalance. Cell Rep. 28, 1419–1428.e3 (2019)

    Google Scholar 

  71. Ma, J., Zq, Y., Lj, Y., Tang, J.: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. A 20, 639–659 (2019)

    Google Scholar 

  72. Jn, T., Tsubo, Y., Fukai, T.: Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links. Sci. Rep. 2, 485 (2012)

    Google Scholar 

  73. Nobukawa, S., Nishimura, H., Yamanishi, T.: Chaotic resonance in typical routes to chaos in the izhikevich neuron model. Sci. Rep. 7, 1331 (2017)

    Google Scholar 

  74. Nobukawa, S., Nishimura, H., Yamanishi, T.: Temporal-specific complexity of spiking patterns in spontaneous activity induced by a dual complex network structure. Sci. Rep. 9, 12749 (2019)

    Google Scholar 

  75. Ostojic, S.: Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nat. Neurosci. 17, 594–600 (2014)

    Google Scholar 

  76. Wieland, S., Bernardi, D., Schwalger, T., Lindner, B.: Slow fluctuations in recurrent networks of spiking neurons. Phys. Rev. E 92, 040901 (2015)

    Google Scholar 

  77. Martí, D., Brunel, N., Ostojic, S.: Correlations between synapses in pairs of neurons slow down dynamics in randomly connected neural networks. Phys. Rev. E 97, 062314 (2018)

    Google Scholar 

  78. Mastrogiuseppe, F., Ostojic, S.: Intrinsically-generated fluctuating activity in excitatory-inhibitory networks. PLoS Comput. Biol. 13(4), 1–40 (2017)

    Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant Nos. 11472061, 11572084) and the Fundamental Research Funds for the Central University (No. 2018XKJC02 and 2019XD-A10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojuan Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Si, H. Population rate coding in recurrent neuronal networks consisting of neurons with mixed excitatory–inhibitory synapses. Nonlinear Dyn 100, 2673–2686 (2020). https://doi.org/10.1007/s11071-020-05653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05653-z

Keywords

Navigation