Skip to main content
Log in

Adaptive fixed-time fault-tolerant control for noncooperative spacecraft proximity using relative motion information

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the control issue of noncooperative spacecraft proximity. In particular, a pursuer spacecraft approaches a noncooperative target while synchronizing its attitude with the target. The pursuer spacecraft is subject to actuator faults and parametric uncertainties. Due to the existence of spatial disturbances on both the target and pursuer, the six-dof (degree-of-freedom) relative motion dynamics are first established in the pursuer’s body frame. Then, by merely using the relative information, a novel adaptive fixed-time fault-tolerant control strategy is proposed under a backstepping framework. Specifically, the relative attitude and position controllers are designed by using an adaptive robust control scheme against parametric uncertainties and spatial disturbances, where a virtual control coefficient-based adaptive algorithm is also introduced to offset the actuator fault effects. It is shown that the relative states driven by the proposed controllers are bounded and converge to a small neighborhood of origin in a fixed time. Simulation comparisons further highlight the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kristiansen, R., Nicklasson, P.J.: Spacecraft formation flying: a review and new results on state feedback control. Acta Astronaut. 65(11), 1537–1552 (2009)

    Article  Google Scholar 

  2. Xin, M., Pan, H.: Indirect robust control of spacecraft via optimal control solution. IEEE Trans. Aerosp. Electron. Syst. 48(2), 1798–1809 (2012)

    Article  Google Scholar 

  3. Sun, L., Huo, W.: 6-DOF integrated adaptive backstepping control for spacecraft proximity operations. IEEE Trans. Aerosp. Electron. Syst. 51(3), 2433–2443 (2015)

    Article  Google Scholar 

  4. Singla, P., Subbarao, K., Junkins, J.L.: Output feedback based adaptive control for spacecraft rendezvous and docking under measurement uncertainties. J. Guid. Control Dyn. 29(4), 892–902 (2006)

    Article  Google Scholar 

  5. Sun, L., Zheng, Z.: Disturbance observer-based robust saturated control for spacecraft proximity maneuvers. IEEE Trans. Control Syst. Technol. 26(2), 684–692 (2018)

    Article  MathSciNet  Google Scholar 

  6. Huang, Y., Jia, Y.: Adaptive finite time distributed 6-DOF synchronization control for spacecraft formation without velocity measurement. Nonlinear Dyn. 95, 2275–2291 (2019)

    Article  Google Scholar 

  7. Zhang, F., Duan, G.: Integrated translational and rotational finite-time maneuver of a rigid spacecraft with actuator misalignment. IET Control Theory Appl. 6(9), 1192–1204 (2012)

    Article  MathSciNet  Google Scholar 

  8. Filipe, N., Tsiotras, P.: Adaptive position and attitude-tracking controller for satellite proximity operations using dual quaternions. J. Guid. Control Dyn. 38(4), 566–577 (2015)

    Article  Google Scholar 

  9. Xia, K., Huo, W.: Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with uncertainties. Nonlinear Dyn. 84(3), 1683–1695 (2016)

    Article  MathSciNet  Google Scholar 

  10. Li, Q., Yuan, J., Zhang, B., et al.: Disturbance observer based control for spacecraft proximity operations with path constraint. Aerosp. Sci. Technol. 79, 154–163 (2018)

    Article  Google Scholar 

  11. Huang, Y., Jia, Y.: Adaptive finite-time 6-DOF tracking control for spacecraft fly-around with input saturation and state constraints. IEEE Trans. Aerosp. Electron. Syst. 55(6), 3259–3272 (2019)

    Article  Google Scholar 

  12. Long, Y., Park, J.H., Ye, D.: A codesign methodology for constrained networked systems with frequency specifications. IEEE Trans. Control Syst. Technol. (2019). https://doi.org/10.1109/TCST.2019.2921942

    Article  Google Scholar 

  13. Long, Y., Park, J.H., Ye, D.: Asynchronous fault detection and isolation for Markov jump systems with actuator failures under networked environment. IEEE Trans. Syst. Man Cybernet. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2930995

    Article  Google Scholar 

  14. Gui, H., Ruiter, A.H.J.: Adaptive fault-tolerant spacecraft pose tracking with control allocation. IEEE Trans. Control Syst. Technol. 27(2), 479–494 (2019)

    Article  Google Scholar 

  15. Xia, K., Huo, W.: Disturbance observer based fault-tolerant control for cooperative spacecraft rendezvous and docking with input saturation. Nonlinear Dyn. 88(4), 2735–2745 (2017)

    Article  Google Scholar 

  16. Wu, L.B., Park, J.H.: Adaptive fault-tolerant control of uncertain switched nonaffine nonlinear systems with actuator faults and time delays. IEEE Trans. Syst. Man Cybernet. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2894750

    Article  Google Scholar 

  17. Wu, L.B., Park, J.H., Zhao, N.N.: Robust adaptive fault-tolerant tracking control for nonaffine stochastic nonlinear systems with full-state constraints. IEEE Trans. Cybernet. (2019). https://doi.org/10.1109/TCYB.2019.2940296

    Article  Google Scholar 

  18. Xia, K., Huo, W.: Adaptive control for spacecraft rendezvous subject to actuator faults and saturations. ISA Trans. 80, 176–186 (2018)

    Article  Google Scholar 

  19. Shen, Q., Wang, D., Zhu, S., et al.: Inertia-free fault-tolerant spacecraft attitude tracking using control allocation. Automatica 62, 114–121 (2015)

    Article  MathSciNet  Google Scholar 

  20. Xia, K., Park, S.-Y.: Adaptive control for spacecraft rendezvous subject to time-varying inertial parameters and actuator faults. J. Aerosp. Eng. 32(5), 04019063 (2019)

    Article  Google Scholar 

  21. Xia, K., Zou, Y.: Adaptive saturated fault-tolerant control for spacecraft rendezvous with redundancy thrusters. IEEE Trans. Control Syst. Technol. (2019). https://doi.org/10.1109/TCST.2019.2950399

    Article  Google Scholar 

  22. Hu, Q., Shao, X., Chen, W.-H.: Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode. IEEE Trans. Aerosp. Electron. Syst. 54(1), 2–17 (2018)

    Article  Google Scholar 

  23. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49, 3591–3599 (2013)

    Article  MathSciNet  Google Scholar 

  24. Zuo, Z.: Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54, 305–309 (2015)

    Article  MathSciNet  Google Scholar 

  25. Zuo, Z., Han, Q.-L., Ning, B.: An explicit estimate for the upper bound of the settling time in fixed-time leader-following consensus of high-order multivariable multiagent systems. IEEE Trans. Ind. Electron. 66(8), 6250–6259 (2019)

    Article  Google Scholar 

  26. Jin, X.: Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions. IEEE Trans. Autom. Control 64(7), 3046–3053 (2019)

    Article  MathSciNet  Google Scholar 

  27. Jiang, B., Hu, Q., Friswell, M.I.: Fixed-time rendezvous control of spacecraft with a tumbling target under loss of actuator effectiveness. IEEE Trans. Aerosp. Electron. Syst. 52(4), 1576–1586 (2016)

    Article  Google Scholar 

  28. Hu, Q., Chen, W., Guo, L.: Fixed-time maneuver control of spacecraft autonomous rendezvous with a free-tumbling target. IEEE Trans. Aerosp. Electron. Syst. 55(2), 562–577 (2019)

    Article  Google Scholar 

  29. Huang, Y., Jia, Y.: Adaptive fixed-time Six-DOF tracking control for noncooperative spacecraft fly-around mission. IEEE Trans. Control Syst. Technol. 27(4), 1796–1804 (2019)

    Article  Google Scholar 

  30. Zou, Y., Meng, Z.: Immersion and invariance-based adaptive controller for quadrotor systems. IEEE Trans. Syst. Man Cybernet. Syst. 49(11), 2288–2297 (2019)

    Article  Google Scholar 

  31. Shuster, M.D.: A survey of attitude representations. J. Astronaut. Sci. 41(4), 439–517 (1993)

    MathSciNet  Google Scholar 

  32. Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems. AIAA, Reston (2003)

    Book  Google Scholar 

  33. Sidi, M.J.: Spacecraft Dynamics and Control: A Practical Engineering Approach. Cambridge University Press, New York (1997)

    Book  Google Scholar 

  34. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by KASI (Korea Astronomy and Space Science Institute) and Yonsei research collaboration program for the frontiers of astronomy and space science, and in part by National Science Foundation of China under Grant 61703229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, K., Zou, Y. Adaptive fixed-time fault-tolerant control for noncooperative spacecraft proximity using relative motion information. Nonlinear Dyn 100, 2521–2535 (2020). https://doi.org/10.1007/s11071-020-05634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05634-2

Keywords

Navigation