Skip to main content

Advertisement

Log in

Dynamics of the double-beam piezo–magneto–elastic nonlinear wind energy harvester exhibiting galloping-based vibration

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates a dynamic model and behavior of a novel double-beam piezo–magneto–elastic nonlinear wind energy harvester (DBPME-WEH). The DBPME-WEH is a double-beam structure, which contains the magnet-induced bistable nonlinearity to enhance the performance of the galloping-based vibration energy harvesting. The corresponding governing equations of motion are formulated, and the numerical results based on the equations are validated by a series of the wind tunnel experiments. Both the numerical and experimental results show that the DBPME-WEH outperforms the linear double-beam piezoelectric wind energy harvester, significantly reducing the cut-in speed. To understand the nonlinear dynamic behavior of the proposed energy harvester, this study performs the numerical investigations of the time-domain responses, phase portraits and frequency spectrums of the DBPME-WEH under selected wind speeds. The intra-well, chaotic and inter-well oscillations are discovered with respect to low, medium and high wind speeds intervals, respectively. The parametric study is performed to uncover the influences of the beams stiffness ratio, effective mass ratio and the width of the bluff body that help developing the insights of the effective design of the DBPME-WEH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wang, J., Geng, L., Ding, L., Zhu, H., Yurchenko, D.: The state-of-the-art review on energy harvesting from flow-induced vibrations. Appl. Energy 267, 114902 (2020)

    Google Scholar 

  2. Yang, Z., Zhou, S., Zu, J., Inman, D.: High-performance piezoelectric energy harvesters and their applications. Joule 2, 642–697 (2018)

    Google Scholar 

  3. Liu, W., Yuan, Z., Zhang, S., Zhu, Q.: Enhanced broadband generator of dual buckled beams with simultaneous translational and torsional coupling. Appl. Energy 251, 113412 (2019)

    Google Scholar 

  4. Wang, J., Gu, S., Zhang, C., Hu, G., Chen, G., Yang, K., Li, H., Lai, Y., Litak, G., Yurchenko, D.: Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping. Energy Conv. Manage. 213, 112835 (2020)

    Google Scholar 

  5. Gao, M., Cong, J., Xiao, J., He, Q., Li, S., Wang, Y., Yao, Y., Chen, R., Wang, P.: Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport. Appl. Energy 257, 113969 (2020)

    Google Scholar 

  6. Zhu, H., Li, G., Wang, J.: Flow-induced vibration of a circular cylinder with splitter plates placed upstream and downstream individually and simultaneously. Appl. Ocean Res. 97, 102084 (2020)

    Google Scholar 

  7. Zhu, H., Zhao, Y., Zhou, T.: CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller. Appl. Energy 212, 304–321 (2018)

    Google Scholar 

  8. Wu, Y., Hu, Y., Huang, Z., Lee, C., Wang, F.: Electret-material enhanced triboelectric energy harvesting from air flow for self-powered wireless temperature sensor network. Sens. Actuators A 271, 364–372 (2018)

    Google Scholar 

  9. Wang, J., Tang, L., Zhao, L., Hu, G., Song, R., Xu, K.: Equivalent circuit representation of a vortex‐induced vibration‐based energy harvester using a semi‐empirical lumped parameter approach. Int. J. Energy Res. 44(6), 4516–4528 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Zou, Q., Ding, L., Wang, H., Wang, J., Zhang, L.: Two-degree-of-freedom flow-induced vibration of a rotating circular cylinder. Ocean Eng. 191, 106505 (2019)

    Google Scholar 

  11. Hu, G., Wang, J., Su, Z., Li, G., Peng, H., Kwok, K.: Performance evaluation of twin piezoelectric wind energy harvesters under mutual interference. Appl. Phys. Lett. 115, 073901 (2019)

    Google Scholar 

  12. Zhao, L.-C., Zou, H.-X., Yan, G., Liu, F.-R., Tan, T., Wei, K.-X., Zhang, W.-M.: Magnetic coupling and flextensional amplification mechanisms for high-robustness ambient wind energy harvesting. Energy Convers. Manag. 201, 112166 (2019)

    Google Scholar 

  13. Javed, U., Abdelkefi, A.: Characteristics and comparative analysis of piezoelectric–electromagnetic energy harvesters from vortex-induced oscillations. Nonlinear Dyn. 95, 3309–3333 (2019)

    Google Scholar 

  14. Lai, Z., Wang, J., Zhang, C., Zhang, G., Yurchenko, D.: Harvest wind energy from a vibro-impact DEG embedded into a bluff body. Energy Convers. Manag. 199, 111993 (2019)

    Google Scholar 

  15. Zhao, L.-C., Zou, H.-X., Yan, G., Liu, F.-R., Tan, T., Zhang, W.-M., Peng, Z.-K., Meng, G.: A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester. Appl. Energy 239, 735–746 (2019)

    Google Scholar 

  16. Wang, J., Tang, L., Zhao, L., Zhang, Z.: Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies. Energy 172, 1066–1078 (2019)

    Google Scholar 

  17. Fang, S., Wang, S., Zhou, S., Yang, Z., Liao, W.H.: Exploiting the advantages of the centrifugal softening effect in rotational impact energy harvesting. Appl. Phys. Lett. 116(6), 063903 (2020)

    Google Scholar 

  18. Wang, J., Hu, G., Su, Z., Li, G., Zhao, W., Tang, L., Zhao, L.: A cross-coupled dual-beam for multi-directional energy harvesting from vortex induced vibrations. Smart Mater. Struct. 28(12), 12LT02 (2019)

    Google Scholar 

  19. Daqaq, M.F., Bibo, A., Akhtar, I., Alhadidi, A.H., Panyam, M., Caldwell, B., Noel, J.: Micropower generation using cross-flow instabilities: a review of the literature and its implications. J. Vib. Acoust. 141, 030801 (2019)

    Google Scholar 

  20. Erturk, A., Inman, D.J.: Piezoelectric energy harvesting. Wiley, Hoboken (2011)

    Google Scholar 

  21. Lu, Z.Q., Chen, J., Ding, H., Chen, L.Q.: Two-span piezoelectric beam energy harvesting. Int. J. Mech. Sci. 175, 105532 (2020)

    Google Scholar 

  22. Akaydin, H.D., Elvin, N., Andreopoulos, Y.: Energy harvesting from highly unsteady fluid flows using piezoelectric materials. J. Intell. Mater. Syst. Struct. 21, 1263–1278 (2010)

    Google Scholar 

  23. Akaydin, H., Elvin, N., Andreopoulos, Y.: The performance of a self-excited fluidic energy harvester. Smart Mater. Struct. 21, 025007 (2012)

    Google Scholar 

  24. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70, 1355–1363 (2012)

    MathSciNet  Google Scholar 

  25. Abdelkefi, A., Yan, Z., Hajj, M.R.: Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping. Smart Mater. Struct. 22, 025016 (2013)

    Google Scholar 

  26. Abdelkefi, A., Yan, Z., Hajj, M.R.: Performance analysis of galloping-based piezoaeroelastic energy harvesters with different cross-section geometries. J. Intell. Mater. Syst. Struct. 25, 246–256 (2014)

    Google Scholar 

  27. Tan, T., Yan, Z., Lei, H.: Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits. Smart Mater. Struct. 26, 075007 (2017)

    Google Scholar 

  28. Yan, Z., Sun, W., Tan, T., Huang, W.: Nonlinear analysis of galloping piezoelectric energy harvesters with inductive-resistive circuits for boundaries of analytical solutions. Commun. Nonlinear Sci. Numer. Simul. 62, 90–116 (2018)

    MathSciNet  Google Scholar 

  29. Tan, T., Yan, Z.: Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode. Smart Mater. Struct. 26, 035062 (2017)

    Google Scholar 

  30. Zhang, L., Dai, H., Abdelkefi, A., Wang, L.: Improving the performance of aeroelastic energy harvesters by an interference cylinder. Appl. Phys. Lett. 111, 073904 (2017)

    Google Scholar 

  31. Zhang, L., Dai, H., Abdelkefi, A., Wang, L.: Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections. Energy 167, 970–981 (2019)

    Google Scholar 

  32. He, X., Yang, X., Jiang, S.: Enhancement of wind energy harvesting by interaction between vortex-induced vibration and galloping. Appl. Phys. Lett. 112, 033901 (2018)

    Google Scholar 

  33. Bibo, A., Daqaq, M.: Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator. Appl. Phys. Lett. 102, 243904 (2013)

    Google Scholar 

  34. Bibo, A., Abdelkefi, A., Daqaq, M.F.: Modeling and characterization of a piezoelectric energy harvester under combined aerodynamic and base excitations. J. Vib. Acoust. 137, 031017 (2015)

    Google Scholar 

  35. Wang, J., Zhou, S., Zhang, Z., Yurchenko, D.: High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Convers. Manag. 181, 645–652 (2019)

    Google Scholar 

  36. Franzini, G.R., Bunzel, L.O.: A numerical investigation on piezoelectric energy harvesting from Vortex-Induced Vibrations with one and two degrees of freedom. J. Fluids Struct. 77, 196–212 (2018)

    Google Scholar 

  37. Hu, Y., Yang, B., Chen, X., Wang, X., Liu, J.: Modeling and experimental study of a piezoelectric energy harvester from vortex shedding-induced vibration. Energy Convers. Manag. 162, 145–158 (2018)

    Google Scholar 

  38. Yang, K., Fei, F., An, H.: Investigation of coupled lever-bistable nonlinear energy harvesters for enhancement of inter-well dynamic response. Nonlinear Dyn. 96, 2369–2392 (2019)

    Google Scholar 

  39. Yang, K., Zhou, Q.: Robust optimization of a dual-stage bistable nonlinear vibration energy harvester considering parametric uncertainties. Smart Mater. Struct. 28, 115018 (2019)

    Google Scholar 

  40. Huang, D., Zhou, S., Yang, Z.: Resonance mechanism of nonlinear vibrational multistable energy harvesters under narrow-band stochastic parametric excitations. Complexity 2019, 1050143 (2019). https://doi.org/10.1155/2019/1050143

    MathSciNet  Google Scholar 

  41. Huang, D., Zhou, S., Han, Q., Litak, G.: Response analysis of the nonlinear vibration energy harvester with an uncertain parameter. Proc. Institut. Mech. Eng. Part K: J Multi-body Dynam. (2019). https://doi.org/10.1177/1464419319893211

    Google Scholar 

  42. Wang, J., Geng, L., Zhou, S., Zhang, Z., Lai, Z., Yurchenko, D.: Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester. Acta Mech. Sinica (2020). https://doi.org/10.1007/s10409-020-00928-5

    Google Scholar 

  43. Zou, H.-X., Zhang, W.-M., Li, W.-B., Wei, K.-X., Hu, K.-M., Peng, Z.-K., Meng, G.: Magnetically coupled flextensional transducer for wideband vibration energy harvesting: design, modeling and experiments. J. Sound Vib. 416, 55–79 (2018)

    Google Scholar 

  44. Guo, X., Zhang, Y., Fan, K., Lee, C., Wang, F.: A comprehensive study of non-linear air damping and “pull-in” effects on the electrostatic energy harvesters. Energy Convers. Manag. 203, 112264 (2020)

    Google Scholar 

  45. Thomson, G., Lai, Z., Val, D.V., Yurchenko, D.: Advantages of nonlinear energy harvesting with dielectric elastomers. J. Sound Vib. 442, 167–182 (2019)

    Google Scholar 

  46. Yang, Z., Tang, L., Tao, K., Aw, K.: A broadband electret-based vibrational energy harvester using soft magneto-sensitive elastomer with asymmetrical frequency response profile. Smart Mater. Struct. 28, 10LT02 (2019)

    Google Scholar 

  47. Wang, G., Liao, W.-H., Zhao, Z., Tan, J., Cui, S., Wu, H., Wang, W.: Nonlinear magnetic force and dynamic characteristics of a tri-stable piezoelectric energy harvester. Nonlinear Dyn. 97, 2371–2397 (2019)

    Google Scholar 

  48. Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn. 69, 1063–1079 (2012)

    Google Scholar 

  49. Yan, B., Ma, H., Zhang, L., Zheng, W., Wang, K., Wu, C.: A bistable vibration isolator with nonlinear electromagnetic shunt damping. Mech. Syst. Signal Process. 136, 106504 (2020)

    Google Scholar 

  50. Yan, B., Ma, H., Zheng, W., Jian, B., Wang, K., Wu, C.: Nonlinear electromagnetic shunt damping for nonlinear vibration isolators. IEEE/ASME Trans. Mechatron. 24, 1851–1860 (2019)

    Google Scholar 

  51. Yan, B., Ma, H., Jian, B., Wang, K., Wu, C.: Nonlinear dynamics analysis of a bi-state nonlinear vibration isolator with symmetric permanent magnets. Nonlinear Dyn. 97, 2499–2519 (2019)

    MATH  Google Scholar 

  52. Yang, K., Harne, R., Wang, K., Huang, H.: Investigation of a bistable dual-stage vibration isolator under harmonic excitation. Smart Mater. Struct. 23, 045033 (2014)

    Google Scholar 

  53. Zhou, Z., Qin, W., Zhu, P., Shang, S.: Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings. Energy 153, 400–412 (2018)

    Google Scholar 

  54. Bibo, A., Alhadidi, A.H., Daqaq, M.F.: Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters. J. Appl. Phys. 117, 045103 (2015)

    Google Scholar 

  55. Alhadidi, A., Daqaq, M.: A broadband bi-stable flow energy harvester based on the wake-galloping phenomenon. Appl. Phys. Lett. 109, 033904 (2016)

    Google Scholar 

  56. Naseer, R., Dai, H., Abdelkefi, A., Wang, L.: Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics. Appl. Energy 203, 142–153 (2017)

    Google Scholar 

  57. Naseer, R., Dai, H., Abdelkefi, A., Wang, L.: Comparative study of piezoelectric vortex-induced vibration-based energy harvesters with multi-stability characteristics. Energies 13, 1–24 (2019)

    Google Scholar 

  58. Alhussein, H., Daqaq, M.F.: Potential well escape in a galloping twin-well oscillator. Nonlinear Dyn. 99, 57–72 (2020)

    MATH  Google Scholar 

  59. Yang, K., Wang, J., Yurchenko, D.: A double-beam piezo–magneto–elastic wind energy harvester for improving the galloping-based energy harvesting. Appl. Phys. Lett. 115, 193901 (2019)

    Google Scholar 

  60. Tang, L., Zhao, L., Yang, Y., Lefeuvre, E.: Equivalent circuit representation and analysis of galloping-based wind energy harvesting. IEEE/ASME Trans. Mechatron. 20, 834–844 (2014)

    Google Scholar 

  61. Lan, C., Tang, L., Qin, W., Xiong, L.: Magnetically coupled dual-beam energy harvester: benefit and trade-off. J. Intell. Mater. Syst. Struct. 29, 1216–1235 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos.: 51977196, 11802097 and 51606171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Yang.

Ethics declarations

Conflicts of interest

This work is a foundational research Granted by the National Natural Science Foundation of China. The funding information has been presented in the acknowledgements. This work is not used for any commercial business, and thus, it has no conflicts of interest.

Human and animals rights

This work is about the mechanical engineering. This research does not involve any human participants or animals.

Informed consent

Only the authors listed in the manuscript are involved into this work. The submission of this research is agreed by all the authors listed in the manuscript and is permitted by both the authors’ affiliations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Geng, L., Yang, K. et al. Dynamics of the double-beam piezo–magneto–elastic nonlinear wind energy harvester exhibiting galloping-based vibration. Nonlinear Dyn 100, 1963–1983 (2020). https://doi.org/10.1007/s11071-020-05633-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05633-3

Keywords

Navigation