Skip to main content
Log in

Event-triggered sliding mode control under the Round-Robin protocol for networked switched systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The event-triggered sliding mode control problem is addressed for a class of networked switched systems subject to communication constraints. Not only the problem of network congestion, but also the problem of data collision is taken into account. In order to lighten network overloads and save bandwidth, an event-triggered scheme is utilized to decide whether a datum is transmitted or not and the Round-Robin protocol is employed to determine the priority of the actuator at a certain instant, which is a novel attempt to the sliding mode control problem for networked switched systems. Sufficient conditions are established such that the closed-loop system with sliding mode dynamics is exponentially stable. An event-based sliding mode control law is constructed under the Round-Robin protocol to drive the system trajectory into a bounded sliding vicinity around the sliding surface. Finally, a numerical example is given to demonstrate the effectiveness of the developed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singh, V.P., Kishor, N., Samuel, P.: Distributed multi-agent system-based load frequency control for multi-area power system in smart grid. IEEE Trans. Ind. Electron. 64(6), 5151–5160 (2017)

    Article  Google Scholar 

  2. Pratl, G., Dietrich, D., Hancke, G.P., Penzhorn, W.T.: A new model for autonomous, networked control systems. IEEE Trans. Ind. Inf. 3(1), 21–32 (2007)

    Article  Google Scholar 

  3. Li, M., Chen, Y., Zhou, A., He, W., Li, X.: Adaptive tracking control for networked control systems of intelligent vehicle. Inf. Sci. 503, 493–507 (2019)

    Article  MathSciNet  Google Scholar 

  4. Hu, S., Yue, D., Xie, X., Chen, X., Yin, X.: Resilient event-triggered controller synthesis of networked control systems under periodic DoS jamming attacks. IEEE Trans. Ind. Inf. 49(12), 4271–4281 (2019)

    Google Scholar 

  5. Zhang, D., Xu, Z., Karimi, H.R., Wang, Q.: Distributed filtering for switched linear systems with sensor networks in presence of packet dropouts and quantization. IEEE Trans. Circuits Syst. I: Regul. Pap. 64(10), 2783–2796 (2017)

    Article  Google Scholar 

  6. Al-Dabbagh, A.W., Chen, T.: Design considerations for wireless networked control systems. IEEE Trans. Ind. Electron. 63(9), 5547–5557 (2016)

    Article  Google Scholar 

  7. Niu, B., Wang, D., Liu, M., Song, X., Wang, H., Duan, P.: Adaptive neural output-feedback controller design of switched nonlower triangular nonlinear systems with time delays. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2019.2952108

  8. Zhou, W., Niu, B., Xie, X., Alsaadi, F.E.: Adaptive neural-network-based tracking control strategy of nonlinear switched non-lower triangular systems with unmodeled dynamics. Neurocomputing 322, 1–12 (2018)

    Article  Google Scholar 

  9. Niu, B., Zhao, P., Liu, J., Ma, H., Liu, Y.: Global adaptive control of switched uncertain nonlinear systems: an improved MDADT method. Automatica 115, 108872 (2020)

    Article  MathSciNet  Google Scholar 

  10. Zong, G., Ren, H.: Guaranteed cost finite-time control for semi-Markov jump systems with event-triggered scheme and quantization input. Int. J. Robust Nonlinear Control 29(15), 5251–5273 (2019)

    Article  MathSciNet  Google Scholar 

  11. Ren, H., Zong, G., Karimi, H.R.: Asynchronous finite-time filtering of networked switched systems and its application: an event-driven method. IEEE Trans. Circuits Syst. I: Regul. Pap. 66(1), 391–402 (2018)

    Article  MathSciNet  Google Scholar 

  12. Yang, D., Zong, G., Karimi, H.R.: \(H_\infty \) refined antidisturbance control of switched LPV systems with application to aero-engine. IEEE Trans. Ind. Electron. 67(4), 3180–3190 (2019)

    Article  Google Scholar 

  13. Zong, G., Li, Y., Sun, H.: Composite anti-disturbance resilient control for Markovian jump nonlinear systems with general uncertain transition rate. Sci. China Inf. Sci. 62(2), 22205 (2019)

    Article  MathSciNet  Google Scholar 

  14. Hu, J., Wang, Z., Chen, D., Alsaadi, F.E.: Estimation, filtering and fusion for networked systems with network-induced phenomena: new progress and prospects. Inf. Fusion 31, 65–75 (2016)

    Article  Google Scholar 

  15. Song, J., Wang, Z., Niu, Y.: On \(H_\infty \) sliding mode control under stochastic communication protocol. IEEE Trans. Autom. Control 64(5), 2174–2181 (2018)

    Article  MathSciNet  Google Scholar 

  16. Donkers, M., Heemels, W., Bernardini, D., Bemporad, A., Shneer, V.: Stability analysis of stochastic networked control systems. Automatica 48(5), 917–925 (2012)

    Article  MathSciNet  Google Scholar 

  17. Wang, D., Wang, Z., Shen, B., Li, Q.: \({H}_\infty \) finite-horizon filtering for complex networks with state saturations: the weighted try-once-discard protocol. Int. J. Robust Nonlinear Control 29(7), 2096–2111 (2019)

    Article  MathSciNet  Google Scholar 

  18. Wan, X., Wang, Z., Wu, M., Liu, X.: \({H}_\infty \) state estimation for discrete-time nonlinear singularly perturbed complex networks under the round-robin protocol. IEEE Trans. Neural Netw. Learn. Syst. 30(2), 415–426 (2018)

    Article  MathSciNet  Google Scholar 

  19. Guan, Y., Han, Q., Yao, H., Ge, X.: Robust event-triggered \(H_\infty \) controller design for vehicle active suspension systems. Nonlinear Dyn. 94, 627–638 (2018)

    Article  Google Scholar 

  20. Ren, H., Zong, G., Choon, K.A.: Event-triggered finite-time resilient control for switched systems: an observer-based approach and its applications to a boost converter circuit system model. Nonlinear Dyn. 94(4), 2409–2421 (2018)

    Article  Google Scholar 

  21. Yang, H., Xu, Y., Zhang, J.: Event-driven control for networked control systems with quantization and Markov packet losses. IEEE Transactions on Cybernetics 47(8), 2235–2243 (2016)

    Article  Google Scholar 

  22. Xiao, X., Park, J.H., Zhou, L.: Event-triggered control of discrete-time switched linear systems with packet losses. Appl. Math. Comput. 333, 344–352 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Utkin, V.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)

    Article  MathSciNet  Google Scholar 

  24. Su, X., Liu, X., Shi, P., Song, Y.: Sliding mode control of hybrid switched systems via an event-triggered mechanism. Automatica 90, 294–303 (2018)

    Article  MathSciNet  Google Scholar 

  25. Liu, J., Wu, L., Wu, C., Luo, W., Franquelo, L.G.: Event-triggering dissipative control of switched stochastic systems via sliding mode. Automatica 103, 261–273 (2019)

    Article  MathSciNet  Google Scholar 

  26. Qi, W., Zong, G., Karimi, H.R.: Sliding mode control for nonlinear stochastic singular semi-Markov jump systems. IEEE Trans. Autom. Control 65(1), 361–368 (2020)

    Article  MathSciNet  Google Scholar 

  27. Qi, W., Zong, G., Karimi, H.R.: Observer-based adaptive SMC for nonlinear uncertain singular semi-Markov jump systems with applications to DC motor. IEEE Trans. Circuits Syst. I: Regul. Pap. 65(9), 2951–2960 (2018)

    Article  MathSciNet  Google Scholar 

  28. Ficola, A., Michele, L.C.: A sliding mode controller for a two-joint robot with an elastic link. Math. Comput. Simul. 41(5–6), 559–569 (1996)

    Article  Google Scholar 

  29. Man, Z., Paplinski, A.P., Wu, H.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Autom. Control 39(12), 2464–2469 (1994)

    Article  MathSciNet  Google Scholar 

  30. Janardhanan, S., Bandyopadhyay, B.: Output feedback sliding-mode control for uncertain systems using fast output sampling technique. IEEE Trans. Ind. Electron. 53(5), 1677–1682 (2006)

    Article  Google Scholar 

  31. Song, J., Niu, Y., Zou, Y.: Asynchronous sliding mode control of Markovian jump systems with time-varying delays and partly accessible mode detection probabilities. Automatica 93, 33–41 (2018)

    Article  MathSciNet  Google Scholar 

  32. Zhao, X., Zhang, L., Shi, P., Liu, M.: Stability and stabilization of switched linear systems with mode-dependent average dwell time. IEEE Trans. Autom. Control 57(7), 1809–1815 (2011)

    Article  MathSciNet  Google Scholar 

  33. Liberzon, D.: Switching in Systems and Control. Springer, New York (2003)

    Book  Google Scholar 

  34. He, H., Gao, X., Qi, W.: Observer-based sliding mode control for switched positive nonlinear systems with asynchronous switching. Nonlinear Dyn. 93(4), 2433–2444 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grant (61773235), partially by Postgraduate Tutor guidance ability improvement project of Shandong Province under Grant (SDYY18125) and partially by the Taishan Scholar Project of Shandong Province under Grant (TSQN20161033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangdeng Zong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, H., Zong, G. Event-triggered sliding mode control under the Round-Robin protocol for networked switched systems. Nonlinear Dyn 100, 2401–2413 (2020). https://doi.org/10.1007/s11071-020-05618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05618-2

Keywords

Navigation