Skip to main content
Log in

Udwadia–Kalaba constraint-based tracking control for artificial swarm mechanical systems: dynamic approach

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel swarm tracking control for artificial swarm mechanical systems consisting of multiple mechanical agents is proposed. In this paper, the agents could not only perform some biological swarm behaviors, such as the repulsion and attraction between agents, but also track the moving target or desired trajectory together. Based on the artificial potential functions, the kinematic modeling of each agent is constructed. The kinematic performance of the swarm system is analyzed, which includes convergence, tracking, aggregation and formation. Inspired by Udwadia–Kalaba constraints, the kinematic modeling of the swarm system is treated as servo constraints and formulated in the second-order form. With the second-order constraints, the explicit servo constraint forces are derived. In virtue of the constraint forces in the closed form, we creatively design a dynamic control for each agent which guarantees the controlled swarm system to obey the required motion. The proposed control scheme is proved by a series of theorems and illustrated by the simulation of multiple nonholonomic mobile robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Assoc. Comput. Mach. 21(4), 25–34 (1987)

    Google Scholar 

  2. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  3. Sun, Y.: Stability analysis of flocking for multi-agent dynamic systems. Nonlinear Anal. Real World Appl. 14(2), 1075–1081 (2013)

    Article  MathSciNet  Google Scholar 

  4. Sakai, D., Fukushima, H., Matsunoy, F.: Flocking for multirobots without distinguishing robots and obstacles. IEEE Trans. Control Syst. Technol. 25(3), 1019–1027 (2017)

    Article  Google Scholar 

  5. Sun, F., Wang, R., Zhu, W., Li, Y.: Flocking in nonlinear multi-agent systems with time-varying delay via event-triggered control. Appl. Math. Comput. 350, 66–77 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Acikmese, B., Bayard, D.S.: Markov chain approach to probabilistic guidance for swarms of autonomous agents. Asian J. Control 17(4), 1105–1124 (2015)

    Article  MathSciNet  Google Scholar 

  7. Lu, Y., Guo, Y., Dong, Z.: Multiagent flocking with formation in a constrained environment. Control Theory Technol. 8(2), 151–159 (2010)

    Article  MathSciNet  Google Scholar 

  8. Burohman, A.M., Widyotriatmo, A., Joelianto, E.: Flocking for nonholonomic robots with obstacle avoidance. In: Electronics Symposium, Denpasar, Indonesia (2016)

  9. Bhowmick, C., Behera, L., Shukla, A., Karki, H.: Flocking control of multi-agent system with leader-follower architecture using consensus based estimated flocking center. In: Conference of the IEEE Industrial Electronics Society, Florence, Italy (2016)

  10. Mellinger, D., Kushleyev, A., Kumar, V.: Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams. In: 2012 IEEE International Conference on Robotics and Automation, Minnesota, USA (2012)

  11. Wolfgang, H., Preiss, J.A., Kumar, T.K.S., Sukhatme, G.S., Ayanian, N.: Trajectory planning for quadrotor swarms. IEEE Trans. Robot. 34(4), 1–14 (2018)

    Article  Google Scholar 

  12. Dasdemir, J., Lora, A.: Robust formation tracking control of mobile robots via one-to-one time-varying communication. Int. J. Control 87(9), 1822–1832 (2014)

    Article  MathSciNet  Google Scholar 

  13. Elmokadem, T., Zribi, M., Youcef-Toumi, K.: Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dyn. 84(2), 1079–1091 (2016)

    Article  MathSciNet  Google Scholar 

  14. Kladis, G.P., Menon, P.P., Edwards, C.: Fuzzy distributed cooperative tracking for a swarm of unmanned aerial vehicles with heterogeneous goals. Int. J. Syst. Sci. 47(16), 3803–3811 (2015)

    Article  MathSciNet  Google Scholar 

  15. Oh, H., Shiraz, A.R., Jin, Y.: Morphogen diffusion algorithms for tracking and herding using a swarm of kilobots. Soft Comput. 22(6), 1833–1844 (2018)

    Article  Google Scholar 

  16. Radian, G., Ghazijahani, Y.K., Saadatkhah, A., Majd, V.J.: Dynamic obstacle avoidance and target tracking for a swarm of robots using distributed Kalman filter. In: 2013 3rd International Conference on Control, Instrumentation, and Automation (ICCIA), Tehran, Iran (2013)

  17. Zhang, H.T., Cheng, Z., Chen, G., Li, C.: Model predictive flocking control for second-order multi-agent systems with input constraints. IEEE Trans. Circuits Syst. I Regul. Pap. 62(6), 1599–1606 (2015)

    Article  MathSciNet  Google Scholar 

  18. Giuseppe, F., Luigi, D.: A kinematic model for swarm finite-time trajectory tracking. IEEE Trans. Cybern. 49(10), 3806–3815 (2018)

    Google Scholar 

  19. Fedele, G., DAlfonso, L.: A model for swarm formation with reference tracking. In: IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, Australia (2017)

  20. Gazi, V., Fidan, B., Ordó\({\tilde{n}}\)ez, R., İlter Köksal, M.: A target tracking approach for nonholonomic agents based on artificial potentials and sliding mode control. J. Dyn. Syst. Meas. Control 134(6), 398–404 (2012)

  21. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  22. Sun, Q., Wang, X., Chen, Y.H.: Adaptive robust control for dual avoidance-arrival performance for uncertain mechanical systems. Nonlinear Dyn. 94(2), 759–774 (2018)

    Article  Google Scholar 

  23. Sun, H., Zhao, H., Zhen, S., Huang, K., Zhao, F., Chen, X., Chen, Y.H.: Application of the Udwadia–Kalaba approach to tracking control of mobile robots. Nonlinear Dyn. 83(1–2), 389–400 (2016)

    Article  MathSciNet  Google Scholar 

  24. Zhao, R., Chen, Y.H., Wu, L., Pan, M.: Robust trajectory tracking control for uncertain mechanical systems: servo constraint-following and adaptation mechanism. Int. J. Control (2018). https://doi.org/10.1080/00207179.2018.1528386

    Article  Google Scholar 

  25. Zhao, R., Chen, Y.H., Jiao, S., Ma, X.: A constraint-following control for uncertain mechanical systems: given force coupled with constraint force. Nonlinear Dyn. 93(3), 1–17 (2018)

    MATH  Google Scholar 

  26. Chen, Y.H.: Constraint-following servo control design for mechanical systems. J. Vib. Control 15(3), 369–389 (2009)

    Article  MathSciNet  Google Scholar 

  27. Chen, Y.H., Zhang, X.: Adaptive robust approximate constraint-following control for mechanical systems. J. Frankl. Inst. 347(1), 69–86 (2010)

    Article  MathSciNet  Google Scholar 

  28. Chen, Y.H.: On the deterministic performance of uncertain dynamical systems. Int. J. Control 43(5), 1557–1579 (1986)

    Article  MathSciNet  Google Scholar 

  29. Pars, L.A.: A Treatise on Analytical Dynamics. OX Bow Press, New York (1979)

    MATH  Google Scholar 

  30. Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Plenum Press, New York (1977)

    Book  Google Scholar 

  31. Udwadia, F.E., Kalaba, R.E., Eun, H.C.: Equations of motion for constrained mechanical systems and the extended D’Alembert’s principle. Q. Appl. Math. 55, 321–331 (1997)

    Article  MathSciNet  Google Scholar 

  32. Chen, Y.H., Pandey, S.: Uncertainty bound-based hybird control for robot manipulators. IEEE Trans. Robot. Autom. 6(3), 303–311 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (No. 51605038), China Postdoctoral Natural Science Foundation (No. 2018M643551), Fundamental Research Funds for Chinese Central Universities (No. 300102258305) and Key Research and Development Program of Shaanxi (No. 2019GY-116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-Hwa Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Li, M., Niu, Q. et al. Udwadia–Kalaba constraint-based tracking control for artificial swarm mechanical systems: dynamic approach. Nonlinear Dyn 100, 2381–2399 (2020). https://doi.org/10.1007/s11071-020-05613-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05613-7

Keywords

Navigation