Skip to main content
Log in

Controlling effect of vector and scalar crossed double-Ma breathers in a partially nonlocal nonlinear medium with a linear potential

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We follow our interest in a nonautonomous (2+1)-dimensional coupled nonlinear Schrödinger equation with partially nonlocal nonlinear effect and a linear potential, and get a relational expression mapping nonautonomous equation into autonomous one. Further applying the Darboux method, we find affluent vector and scalar solutions, including the crossed double-Ma breather solution. Regulating values of initial width, initial chirp and diffraction parameters so that the maximal value of accumulated time changes to compare with values of peak positions, we actualize the controlling effect of vector and scalar crossed double-Ma breathers including the complete shape, crest shape and nascent shape excitations in different linear potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guan, X., Liu, W., Zhou, Q., Biswas, A.: Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation. Nonlinear Dyn. 98, 1491–1500 (2019)

    Article  Google Scholar 

  2. Dai, C.Q., Fan, Y., Zhang, N.: Re-observation on localized waves constructed by variable separation solutions of (1+1)-dimensional coupled integrable dispersionless equations via the projective Riccati equation method. Appl. Math. Lett. 96, 20–26 (2019)

    Article  MathSciNet  Google Scholar 

  3. Hua, Y.F., Guo, B.L., Ma, W.X., Lv, X.: Interaction behavior associated with a generalized (2 + 1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 74, 184–198 (2019)

    Article  MathSciNet  Google Scholar 

  4. Dai, C.Q., Wang, Y.Y., Fan, Y., Zhang, J.F.: Interactions between exotic multi-valued solitons of the (2+1)-dimensional Korteweg-de Vries equation describing shallow water wave. Appl. Math. Model. 80, 506–515 (2020)

    Article  MathSciNet  Google Scholar 

  5. Wu, G.Z., Yu, L.J., Wang, Y.Y.: Fractional optical solitons of the space-time fractional nonlinear Schrodinger equation. Optik 207, 164405 (2020)

    Article  Google Scholar 

  6. Chen, S.J., Lin, J.N., Wang, Y.Y.: Soliton solutions and their stabilities of three (2+1)-dimensional PT-symmetric nonlinear Schrödinger equations with higher-order diffraction and nonlinearities. Optik 194, 162753 (2019)

    Article  Google Scholar 

  7. Fang, J.J., Dai, C.Q.: Optical solitons of a time-fractional higher-order nonlinear Schrodinger equation. Optik 209, 164574 (2020)

    Article  Google Scholar 

  8. Yu, W.T., Zhou, Q., Mirzazadeh, M., Liu, W.J., Biswas, A.: Phase shift, amplification, oscillation and attenuation of solitons in nonlinear optics. J. Adv. Res. 15, 69–76 (2019)

    Article  Google Scholar 

  9. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Article  Google Scholar 

  10. Wang, B.H., Lu, P.H., Dai, C.Q.: Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrodinger equation. Res. Phys. 17, 103036 (2020)

    Google Scholar 

  11. Dai, C.Q., Liu, J., Fan, Y., Yu, D.G.: Two-dimensional localized Peregrine solution and breather excited in a variable-coefficient nonlinear Schrödinger equation with partial nonlocality. Nonlinear Dyn. 88, 1373–1383 (2017)

    Article  Google Scholar 

  12. Dai, C.Q., Fan, Y., Wang, Y.Y.: Three-dimensional optical solitons formed by the balance between different-order nonlinearities and high-order dispersion/diffraction in parity-time symmetric potentials. Nonlinear Dyn. 98, 489–499 (2019)

    Article  Google Scholar 

  13. Chen, Y.X., Zheng, L.H., Xu, F.Q.: Spatiotemporal vector and scalar solitons of the coupled nonlinear Schrodinger equation with spatially modulated cubic-quintic-septimal nonlinearities. Nonlinear Dyn. 93, 2379–2388 (2018)

    Article  Google Scholar 

  14. Dai, C.Q., Fan, Y., Zhou, G.Q., Zheng, J., Chen, L.: Vector spatiotemporal localized structures in (3 + 1)-dimensional strongly nonlocal nonlinear media. Nonlinear Dyn. 86, 999–1005 (2016)

    Article  MathSciNet  Google Scholar 

  15. Luo, Z., Li, Y., Pang, W., Liu, Y.: Dipolar matter-wave soliton in one-dimensional optical lattice with tunable local and nonlocal nonlinearities. J. Phys. Soc. Jpn. 82, 094401 (2013)

    Article  Google Scholar 

  16. Sarkar, S., Bhattacharyay, A.: Non-local interactions in a BEC: an analogue gravity perspective. J. Phys. A Math. Theor. 47, 092002 (2014)

    Article  MathSciNet  Google Scholar 

  17. Maruno, K., Ohta, Y.: Localized solitons of a (2 +1)-dimensional nonlocal nonlinear Schrödinger equation. Phys. Lett. A 372, 4446–4450 (2008)

    Article  Google Scholar 

  18. Dai, C.Q., Wang, Y., Liu, J.: Spatiotemporal Hermite–Gaussian solitons of a (3 + 1)-dimensional partially nonlocal nonlinear Schrodinger equation. Nonlinear Dyn. 84, 1157–1161 (2016)

    Article  MathSciNet  Google Scholar 

  19. Wang, Y.Y., Dai, C.Q., Xu, Y.Q., Zheng, J., Fan, Y.: Dynamics of nonlocal and localized spatiotemporal solitons for a partially nonlocal nonlinear Schrodinger equation. Nonlinear Dyn 92, 1261–1269 (2018)

    Article  Google Scholar 

  20. Chen, Y.X.: Excitation manipulation of three-dimensional completely localized rogue waves in a partially nonlocal and inhomogeneous nonlinear medium. Nonlinear Dyn. 97, 177–184 (2019)

    Article  Google Scholar 

  21. Chen, Y.X., Xu, F.Q., Hu, Y.L.: Excitation control for three-dimensional Peregrine solution and combined breather of a partially nonlocal variable-coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 95, 1957–1964 (2019)

    Article  Google Scholar 

  22. Liu, Q.: Analytical matter wave solutions of a (2+1)-dimensional partially nonlocal distributed-coefficient Gross–Pitaevskii equation with a linear potential. Optik 200, 163434 (2020)

    Article  Google Scholar 

  23. Wu, H.Y., Jiang, L.H.: Excitation management of (2+1)-dimensional breathers for a coupled partially nonlocal nonlinear Schrodinger equation with variable coefficients. Nonlinear Dyn. 95, 3401–3409 (2019)

    Article  Google Scholar 

  24. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Second-order nonlinear Schrodinger equation breather solutions in the degenerate and rogue wave limits. Phys. Rev. E 85, 066601 (2012)

    Article  Google Scholar 

  25. Serkin, V.N., Belyaeva, T.L., Alexandrov, I.V., Melchor, G.M.: Novel topological quasi-soliton solutions for the nonlinear cubic-quintic Schrodinger equation model. Proc. SPIE 4271, 292–302 (2001)

    Article  Google Scholar 

  26. Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR20A050001) and the National Natural Science Foundation of China (Grant No. 61877053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Qing Dai.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Human and animal rights

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, CQ., Zhang, JF. Controlling effect of vector and scalar crossed double-Ma breathers in a partially nonlocal nonlinear medium with a linear potential. Nonlinear Dyn 100, 1621–1628 (2020). https://doi.org/10.1007/s11071-020-05603-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05603-9

Keywords

Navigation