Skip to main content
Log in

Nonlinear dynamics in the flexible shaft rotating–lifting system of silicon crystal puller using Czochralski method

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Silicon crystal puller (SCP) is key equipment in silicon wafer manufacture, which is, in turn, the base material for the most currently used integrated circuit chips. With the development of the techniques, the demand for longer mono-silicon crystal rod with larger diameter is continuously increasing in order to reduce the manufacture time and the price of the wafer. This demand calls for larger SCP with an increasing height, though it causes serious swing phenomenon of the crystal seed. The strong swing of the seed increases the possibility of defects in the mono-silicon rod and the risk of mono-silicon growth failure. The main aim of this paper is to analyze the nonlinear dynamics in flexible shaft rotating–lifting (FSRL) system of the SCP. A mathematical model for the swing motion of the FSRL system is derived. The influence of relevant parameters, such as system damping, excitation amplitude, and rotation speed, on the stability and the responses of the system is analyzed. The stability of the equilibrium, bifurcation, and chaotic motion is demonstrated, which have been observed in practical situations. Melnikov method is used to derive the possible parameter region which leads to chaotic motion. Three routes to chaos are identified in the FSRL system, including period doubling, symmetry-breaking bifurcation, and crisis. The work in this paper analyzes and explains the complex dynamics in FSRL system of the SCP, which will be helpful for the designers in the designing process in order to avoid the swing phenomenon in the SCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lan, C.W.: Recent progress of crystal growth modeling and growth control. Chem. Eng. Sci. 59, 1437–1457 (2004)

    Article  Google Scholar 

  2. Stelian, C., Nehari, A., Lasloudji, I., Lebbou, K., Dumortier, M., Cabane, H., Duffar, T.: Modeling the effect of crystal and crucible rotation on the interface shape in Czochralski growth of piezoelectric langatate crystals. J. Cryst. Growth 475, 368–377 (2017)

    Article  Google Scholar 

  3. Zhang, J., Ren, J.C., Liu, D.: Effect of crucible rotation and crystal rotation on the oxygen distribution at the solid–liquid interface during the growth of Czochralski monocrystalline silicon under superconducting horizontal magnetic field. Results Phys. 13, 102127 (2019)

    Article  Google Scholar 

  4. Li, Y.R., Zhang, L., Zhang, L., Wu, C.M.: Experimental study on complex flow of a binary mixture in Czochralski configurations with different aspect ratios and rotation rates. Int. J. Heat Mass Transf. 117, 835–845 (2018)

    Article  Google Scholar 

  5. Yuan, D.N., Ma, J.P., Yang, R., Fu, W.P., Liu, H.Z.: Dynamic simulation of oscillation phenomenon of single-crystal growth furnace lifting system based on double pendulum model. J. Xi’an Univ. Technol. 24, 177–181 (2008)

    Google Scholar 

  6. Yuan, D.N., Shi, J.W.: Vibration model and simulation for pulling system of single-crystal growth furnace. J. Synth. Cryst. 39, 545–551 (2010)

    Google Scholar 

  7. Depetri, G.I., Pereira, F., Marin, B., Baptista, M.S., Sartorelli, J.C.: Dynamics of a parametrically excited simple pendulum. Chaos 28, 033103 (2018)

    Article  MathSciNet  Google Scholar 

  8. Zhen, B., Xu, J., Song, Z.: Influence of nonlinearity on transition curves in a parametric pendulum system. Commun. Nonlinear Sci. Numer. Simul. 42, 275–284 (2017)

    Article  MathSciNet  Google Scholar 

  9. Andreeva, T., Alevras, P., Naess, A., Yurchenko, D.: Dynamics of a parametric rotating pendulum under a realistic wave profile. Int. J. Dyn. Control 4(2), 233–238 (2016)

    Article  MathSciNet  Google Scholar 

  10. Han, N., Cao, Q.: A parametrically excited pendulum with irrational nonlinearity. Int. J. Non-Linear Mech. 88, 122–134 (2017)

    Article  Google Scholar 

  11. Alevras, P., Brown, I., Yurchenko, D.: Experimental investigation of a rotating parametric pendulum. Nonlinear Dyn. 81, 201–213 (2015)

    Article  Google Scholar 

  12. Belyakov, A.O., Seyranian, A.P.: Homoclinic, subharmonic, and superharmonic bifurcations for a pendulum with periodically varying length. Nonlinear Dyn. 77, 1617–1627 (2014)

    Article  MathSciNet  Google Scholar 

  13. Soto, I., Campa, R.: Modelling and control of a spherical inverted pendulum on a five-bar mechanism. Int. J. Adv. Robot. Syst. 12, 1–16 (2015)

    Article  Google Scholar 

  14. Reddy, B.S., Ghosal, A.: Chaotic motion in a flexible rotating beam and synchronization. J. Comput. Nonlinear Dyn. 12(4), 044505 (2017)

    Article  Google Scholar 

  15. Yuan, G., Hunt, B., Grebogi, C., Ott, E., Yorke, J.A., Kostelich, E.: Design and control of shipboard cranes. In: Proceedings of the ASME Design Engineering Technical Conference VIB. ASEM, p. 4095 (1997)

  16. Abdel-Rahman, E.M., Nayfeh, A.H.: Pendulation reduction in boom cranes using cable length manipulation. Nonlinear Dyn. 27, 255–269 (2002)

    Article  Google Scholar 

  17. Pan, J.N., Qin, W.Y., Deng, W.Z., Zhou, H.L.: Harvesting base vibration energy by a piezoelectric inverted beam with pendulum. Chin. Phys. B 28(1), 017701 (2019)

    Article  Google Scholar 

  18. Wiggins, S.S.: Chaotic dynamics of a whirling pendulum. Phys. D Nonlinear Phenom. 31, 190–211 (1988)

    Article  MathSciNet  Google Scholar 

  19. Chen, L.J., Li, J.B.: Chaotic behavior and subharmonic bifurcations for a rotating pendulum equation. Int. J. Bifurc. Chaos 14, 3477–3488 (2004)

    Article  MathSciNet  Google Scholar 

  20. Melnikov, V.K.: On the stability of the center for time periodic perturbations. Trans. Mosc. Math. Soc. 12, 3–52 (1963)

    MathSciNet  Google Scholar 

  21. Bishop, S.R., Sofroniou, A., Shi, P.: Symmetry-breaking in the response of the parametrically excited pendulum model. Chaos Solitons Fractals 25, 257–264 (2005)

    Article  Google Scholar 

  22. Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes in chaotic attractors, and transient chaos. Phys. D Nonlinear Phenom. 1983(7), 181–200 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The project is supported by the Key Program of National Natural Science Foundation of China (Grant No. 61533014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Peng Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, HP., Zhou, ZX. & Grebogi, C. Nonlinear dynamics in the flexible shaft rotating–lifting system of silicon crystal puller using Czochralski method. Nonlinear Dyn 102, 771–784 (2020). https://doi.org/10.1007/s11071-020-05592-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05592-9

Keywords

Navigation