Skip to main content
Log in

Mitigation of vortex-induced vibration lock-in using time-delay closed-loop control

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the closed-loop control of a circular cylinder showing lock-in phenomena due to vortex-induced vibrations (VIV). The control action was implemented by a sampled-data proportional-integral-derivative (PID) controller to suppress the large amplitudes due to lock-in. The controller was first applied to a linearized system to observe its stability characteristics based on the eigenvalues of the system. Another method was also proposed, which employs a novel, time-dependent Lyapunov function that is positive definite at sampling times but not necessarily between the sampling times. A new set of sufficient conditions in terms of linear matrix inequalities is derived to obtain the sampled-data PID control gains for the VIV system. The PID controller tuned with these gains for various delays was applied to control the nonlinear responses of the circular cylinder during the lock-in. The results showed that the PID controller significantly reduced the rise in lock-in amplitude compared to only proportional control and for certain delays was able to completely mitigate the effects of lock-in. It was also observed that for delays ranging from 0.1 to 0.14 s, the nonlinear system was destabilized with increasing proportional gains as indicated by the eigenvalue analysis of the linearized system. Even under such situations, properly tuned integral and derivative gains could significantly reduce the amplitude rise otherwise observed due to lock-in of the uncontrolled system. Finally, an on-off control scheme was also proposed, which, if optimized properly, can restrict the lock-in amplitude to some prescribed limit by only using the control for some fraction of the total operational time. Thus, it can potentially save control power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abdelkefi, A., Hajj, M., Nayfeh, A.: Piezoelectric energy harvesting from transverse galloping of bluff bodies. Smart Mater. Struct. 22(1), 015014 (2012)

    Article  Google Scholar 

  2. Akhtar, I., Nayfeh, A.H.: Model based control of laminar wake using fluidic actuation. J. Comput. Nonlinear Dyn. 5(4), 041015 (2010)

    Article  Google Scholar 

  3. Baz, A., Ro, J.: Active control of flow-induced vibrations of a flexible cylinder using direct velocity feedback. J. Sound Vib. 146(1), 33–45 (1991)

    Article  Google Scholar 

  4. Blackburn, H., Henderson, R.: Lock-in behavior in simulated vortex-induced vibration. Exp. Therm. Fluid Sci. 12(2), 184–189 (1996)

    Article  Google Scholar 

  5. Blevins, R.: The effect of sound on vortex shedding from cylinders. J. Fluid Mech. 161, 217–237 (1985)

    Article  Google Scholar 

  6. Blevins, R.D.: Flow-Induced Vibrations. van Nostrand Reinhold, New York (1990)

    Google Scholar 

  7. Chen, Z., Fan, B., Zhou, B., Aubry, N.: Control of vortex shedding behind a circular cylinder using electromagnetic forces. Mod. Phys. Lett. B 19(28n29), 1627–1630 (2005)

    Article  Google Scholar 

  8. Dai, H., Abdelkefi, A., Wang, L.: Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations. J. Intell. Mater. Syst. Struct. 25(14), 1861–1874 (2014). https://doi.org/10.1177/1045389X14538329

    Article  Google Scholar 

  9. Dai, H., Abdelkefi, A., Wang, L.: Vortex-induced vibrations mitigation through a nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 42, 22–36 (2017)

    Article  Google Scholar 

  10. Dai, H., Abdelkefi, A., Wang, L., Liu, W.: Time-delay feedback controller for amplitude reduction in vortex-induced vibrations. Nonlinear Dyn. 80(1–2), 59–70 (2015)

    Article  MathSciNet  Google Scholar 

  11. Facchinetti, M.L., De Langre, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19(2), 123–140 (2004)

    Article  Google Scholar 

  12. Fridman, E., Seuret, A., Richard, J.P.: Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40(8), 1441–1446 (2004)

    Article  MathSciNet  Google Scholar 

  13. Ge, M., Chiu, M.S., Wang, Q.G.: Robust pid controller design via LMI approach. J. Process Control 12(1), 3–13 (2002)

    Article  Google Scholar 

  14. Gu, K., Chen, J., Kharitonov, V.L.: Stability of Time-Delay Systems. Springer, Berlin (2003)

    Book  Google Scholar 

  15. Hartlen, R.T., Currie, I.G.: Lift-oscillator model of vortex-induced vibration. J. Eng. Mech. Div. 96(5), 577–591 (1970)

    Google Scholar 

  16. Hasheminejad, S.M., Rabiee, A.H., Jarrahi, M., Markazi, A.: Active vortex-induced vibration control of a circular cylinder at low Reynolds numbers using an adaptive fuzzy sliding mode controller. J. Fluids Struct. 50, 49–65 (2014)

    Article  Google Scholar 

  17. Huang, X.: Feedback control of vortex shedding from a circular cylinder. Exp. Fluids 20(3), 218–224 (1996)

    Article  MathSciNet  Google Scholar 

  18. Kammler, D.W.: A First Course in Fourier Analysis. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  19. Keber, M., Wiercigroch, M.: Dynamics of a vertical riser with weak structural nonlinearity excited by wakes. J. Sound Vib. 315(3), 685–699 (2008)

    Article  Google Scholar 

  20. Mackowski, A., Williamson, C.: An experimental investigation of vortex-induced vibration with nonlinear restoring forces. Phys. Fluids 25(8), 087101 (2013)

    Article  Google Scholar 

  21. Mittal, S., et al.: Lock-in in vortex-induced vibration. J. Fluid Mech. 794, 565–594 (2016)

    Article  MathSciNet  Google Scholar 

  22. Mozelli, L.A., Souza, F.O.: Pid tuning under uncertain conditions: robust LMI design for second-order plus time-delay transfer functions. IFAC Proc. Vol. 46(3), 120–125 (2013)

    Article  Google Scholar 

  23. Owen, J.C., Bearman, P.W., Szewczyk, A.A.: Passive control of VIV with drag reduction. J. Fluids Struct. 15(3–4), 597–605 (2001)

    Article  Google Scholar 

  24. Païdoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 1. Academic Press, New York (1998)

    Google Scholar 

  25. Païdoussis, M.P.: The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across applied mechanics. J. Sound Vib. 310(3), 462–492 (2008)

    Article  MathSciNet  Google Scholar 

  26. Païdoussis, M.P., Price, S.J., De Langre, E.: Fluid–Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  27. Pantazopoulos, M.S.: Vortex-induced vibration parameters: critical review. American Society of Mechanical Engineers, New York, NY (United States). Technical Report (1994)

  28. Quadrante, L.A.R., Nishi, Y.: Amplification/suppression of flow-induced motions of an elastically mounted circular cylinder by attaching tripping wires. J. Fluids Struct. 48, 93–102 (2014)

    Article  Google Scholar 

  29. Sakthivel, R., Santra, S., Kaviarasan, B., Park, J.H.: Finite-time sampled-data control of permanent magnet synchronous motor systems. Nonlinear Dyn. 86(3), 2081–2092 (2016)

    Article  Google Scholar 

  30. Sakthivel, R., Santra, S., Mathiyalagan, K., Anthoni, S.M.: Robust reliable sampled-data control for offshore steel jacket platforms with nonlinear perturbations. Nonlinear Dyn. 78(2), 1109–1123 (2014)

    Article  MathSciNet  Google Scholar 

  31. Simiu, E., Scanlan, R.H.: Wind Effects on Structures: Fundamentals and Applications to Design. Wiley, Hoboken (1996)

    Google Scholar 

  32. Souza, F.D.O., Mozelli, L.A., de Oliveira, M.C., Palhares, R.M.: LMI design method for networked-based PID control. Int. J. Control 89(10), 1962–1971 (2016)

    Article  MathSciNet  Google Scholar 

  33. Srinil, N., Zanganeh, H.: Modelling of coupled cross-flow/in-line vortex-induced vibrations using double duffing and van der Pol oscillators. Ocean Eng. 53, 83–97 (2012)

    Article  Google Scholar 

  34. Tumkur, R.K.R., Domany, E., Gendelman, O.V., Masud, A., Bergman, L.A., Vakakis, A.F.: Reduced-order model for laminar vortex-induced vibration of a rigid circular cylinder with an internal nonlinear absorber. Commun. Nonlinear Sci. Numer. Simul. 18(7), 1916–1930 (2013)

    Article  MathSciNet  Google Scholar 

  35. Violette, R., de Langre, E., Szydlowski, J.: Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments. Comput. Struct. 85(11–14), 1134–1141 (2007)

    Article  Google Scholar 

  36. Warui, H., Fujisawa, N.: Feedback control of vortex shedding from a circular cylinder by cross-flow cylinder oscillations. Exp. Fluids 21(1), 49–56 (1996)

    Article  Google Scholar 

  37. Williamson, C., Govardhan, R.: A brief review of recent results in vortex-induced vibrations. J. Wind Eng. Ind. Aerodyn. 96(6), 713–735 (2008). https://doi.org/10.1016/j.jweia.2007.06.019

    Article  Google Scholar 

  38. Williamson, C.H., Roshko, A.: Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2(4), 355–381 (1988)

    Article  Google Scholar 

  39. Xu, F., Chen, W.L., Xiao, Y.Q., Li, H., Ou, J.P.: Numerical study on the suppression of the vortex-induced vibration of an elastically mounted cylinder by a traveling wave wall. J. Fluids Struct. 44, 145–165 (2014)

    Article  Google Scholar 

  40. Yu, D., Païdoussis, M.P., Shen, H., Wang, L.: Dynamic stability of periodic pipes conveying fluid. J. Appl. Mech. 81(1), 011008 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

During this research, the first author was supported in part at the Technion by a fellowship of the Israel Council for Higher Education, and the second author was supported by a Technion fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wrik Mallik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallik, W., Santra, S. Mitigation of vortex-induced vibration lock-in using time-delay closed-loop control. Nonlinear Dyn 100, 1441–1456 (2020). https://doi.org/10.1007/s11071-020-05589-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05589-4

Keywords

Navigation