Skip to main content
Log in

Soliton elastic interactions and dynamical analysis of a reduced integrable nonlinear Schrödinger system on a triangular-lattice ribbon

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this paper is a discrete reduced integrable nonlinear Schrödinger system on a triangular-lattice ribbon, which may have some prospective applications in modern nanoribbon. First, we construct the infinitely many conservation laws and discrete N-fold Darboux transformation for this system based on its known Lax pair. Then bright–bright multi-soliton and breather solutions in terms of determinants are obtained by means of the resulting Darboux transformation. Moreover, we investigate soliton interactions through asymptotic analysis and analyze some important physical quantities such as amplitudes, wave numbers, wave widths, velocities, energies and initial phases. Finally, the dynamical evolution behaviors are discussed via numerical simulations. It is found that soliton interactions in this system are elastic, and their evolutions are stable against a small noise in a short period of time. Results obtained in this paper may have some prospective applications for understanding some physical phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wazwaz, A.M., Kaur, L.: Complex simplified Hirota’s forms and Lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV-Sine-Gordon equation. Nonlinear Dyn. 95, 2209–2215 (2019)

    Google Scholar 

  2. Wazwaz, A.M., Kaur, L.: New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dyn. 97, 83–94 (2019)

    MATH  Google Scholar 

  3. Wazwaz, A.M.: Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations. Nonlinear Dyn. 85, 731–737 (2016)

    MathSciNet  Google Scholar 

  4. Wazwaz, A.M.: Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order modified KdV equations. Appl. Math. Lett. 88, 1–7 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Zuo, D.W., Gao, Y.T., Meng, G.Q., Shen, Y.J., Xin, Y.: Multi-soliton solutions for the three-coupled KdV equations engendered by the Neumann system. Nonlinear Dyn. 75, 701–708 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Hu, X.B., Ma, W.X.: Application of Hirota’s bilinear formalism to the Toeplitz lattice-some special soliton-like solutions. Phys. Lett A 293, 161–165 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, New York (2003)

    Google Scholar 

  8. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (2013)

    MATH  Google Scholar 

  9. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B: Quantum Semiclass. Opt. 7, R53–R72 (2005)

    Google Scholar 

  10. Mihalache, D.: Localized optical structures: an overview of recent theoretical and experimental developments. Proc. Roman. Acad. A 16, 62–69 (2015)

    MathSciNet  Google Scholar 

  11. Yue, Y., Huang, L., Chen, Y.: \(N\)-solitons, breathers, lumps and rogue wave solutions to a (3+1)-dimensional nonlinear evolution equation. Comput. Math. Appl. 75, 2538–2548 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A.: How to excite a rogue wave. Phys. Rev. A 80, 043818 (2009)

    Google Scholar 

  13. Ma, W.X.: The inverse scattering transform and soliton solutions of a combined modified Korteweg–de Vries equation. J. Math. Anal. Appl. 471, 796–811 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segui, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    MathSciNet  MATH  Google Scholar 

  15. Chen, X.J., Lam, W.K.: Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Phys. Rev. E 69, 066604 (2004)

    MathSciNet  Google Scholar 

  16. Ji, J.L., Zhu, Z.N.: Soliton solutions of an integrable nonlocal modified Korteweg–de Vries equation through inverse scattering transform. J. Math. Anal. Appl. 453, 973–984 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Dodd, R.K., Bullough, R.K.: Bäcklund transformations for the sine-Gordon equations. Proc. R. Soc. Lond. 351, 499–523 (1976)

    MATH  Google Scholar 

  18. Ma, W.X., Hu, X.B., Zhu, S.M., Wu, Y.T.: Bäcklund transformation and its superposition principle of a Blaszak–Marciniak four-field lattice. J. Math. Phys. 40, 6071 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Liu, Y.P., Gao, Y.T., Wei, G.M.: An improved \(\Gamma \)-Riccati Bäcklund transformation and its applications for the inhomogeneous nonlinear Schrödinger model from plasma physics and nonlinear optics. Phys. A 391, 535–543 (2012)

    Google Scholar 

  20. Liu, D.Y., Tian, B., Jiang, Y., Sun, W.R.: Soliton solutions and Bäcklund transformations of a (2+1)-dimensional nonlinear evolution equation via the Jaulent–Miodek hierarchy. Nonlinear Dyn. 78, 2314–2347 (2014)

    MATH  Google Scholar 

  21. Zhao, X.H., Tian, B., Xie, X.Y., Wu, X.Y., Sun, Y., Guo, Y.J.: Solitons, Bäcklund transformation and lax pair for a (2+1)-dimensional Davey–Stewartson system on surface waves of finite depth. Waves Random. Complex. 28, 356–366 (2018)

    MathSciNet  Google Scholar 

  22. Wen, X.Y., Yang, Y.Q., Yan, Z.: Generalized perturbation \((n, M)\)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation. Phys. Rev. E. 92, 012917 (2015)

    MathSciNet  Google Scholar 

  23. Wen, X.Y., Yan, Z., Malomed, B.A.: Higher-order vector discrete rogue-wave states in the coupled Ablowitz–Ladik equations: exact solutions and stability. Chaos 26, 123110 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Wen, X.Y., Wang, D.S.: Modulational instability and higher order-rogue wave solutions for the generalized discrete Hirota equation. Wave Motion 79, 84–97 (2018)

    MathSciNet  Google Scholar 

  25. Yu, F., Feng, S.: Explicit solution and Darboux transformation for a new discrete integrable soliton hierarchy with \(4\times 4\) Lax pairs. Math. Method. Appl. Sci. 40, 5515–5525 (2017)

    MATH  Google Scholar 

  26. Xue, Y.S., Tian, B., Ai, W.B., Qi, F.H., Guo, R., Qin, B.: Soliton interactions in a generalized inhomogeneous coupled Hirota–Maxwell–Bloch system. Nonlinear Dyn. 67, 2799–2807 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Yu, J.P., Ma, W.X., Sun, Y.L., Khalique, C.M.: \(N\)-fold Darboux transformation and conservation laws of the modified Volterra lattice. Mod. Phys. Lett. B 32, 1850409 (2018)

    MathSciNet  Google Scholar 

  28. Fan, E.G.: Darboux transformation and soliton-like solutions for the Gerdjikov–Ivanov equation. J. Phys. A: Math. Gen. 33, 6925–6933 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Wen, X.Y.: elastic interaction and conservation laws for the nonlinear self-dual network equation in electric circuit. J. Phys. Soc. Jpn. 81, 114006 (2012)

    Google Scholar 

  30. Guo, R., Zhao, X.J.: Discrete Hirota equation: discrete Darboux transformation and new discrete soliton solutions. Nonlinear Dyn. 84, 1901–1907 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Li, Q., Wang, D.S., Wen, X.Y., Zhuang, J.H.: An integrable lattice hierarchy based on Suris system: \(N\)-fold Darboux transformation and conservation laws. Nonlinear Dyn. 91, 625–639 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Ling, L., Feng, B.F., Zhu, Z.: General soliton solutions to a coupled Fokas–Lenells equation. Nonlinear Anal. 40, 185–214 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Ma, W.X., Zhang, Y.J.: Darboux transformations of integrable couplings and applications. Rev. Math. Phys. 30, 1850003 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Xu, T., Chen, Y.: Darboux transformation of the coupled nonisospectral Gross–Pitaevskii system and its multi-component generalization. Commun. Nonlinear Sci. Numer. Simul. 57, 276–289 (2018)

    MathSciNet  Google Scholar 

  35. Wang, H.T., Wen, X.Y.: Dynamics of discrete soliton propagation and elastic interaction in a higher-order coupled Ablowitz–Ladik equation. Appl. Math. Lett. 100, 106013 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Liu, P., Jia, M., Lou, S.Y.: Lax pair and exact solutions of a discrete coupled system related to coupled KdV and coupled mKdV equations. Phys. Scripta 76, 674–679 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Dauxois, T., Ruffo, S.: Fermi–Pasta–Ulam nonlinear lattice oscillations. Scholarpedia 3(8), 5538 (2008)

    Google Scholar 

  38. Vakhnenko, O.O.: Solitons on a zigzag-runged ladder lattice. Phys. Rev. E. 64, 067601 (2001)

    Google Scholar 

  39. Vakhnenko, O.O.: Integrable nonlinear ladder system with background-controlled intersite resonant coupling. J. Phys. A: Math. Gen. 39, 11013–11027 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Vakhnenko, O.O.: Nonlinear integrable model of Frenkel-like excitations on a ribbon of triangular lattice. J. Math. Phys. 56, 033505 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Vakhnenko, O.O.: Asymmetric canonicalization of the integrable nonlinear Schrödinger system on a triangular-lattice ribbon. Appl. Math. Lett. 64, 81–86 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Vakhnenko, O.O.: Coupling-governed metamorphoses of the integrable nonlinear Schrödinger system on a triangular-lattice ribbon. Phys. Lett. A 380, 2069–2074 (2016)

    MathSciNet  Google Scholar 

  43. Vakhnenko, O.O.: Integrable nonlinear Schrödinger system on a triangular-lattice ribbon. J. Phys. Soc. Jpn. 84, 014003 (2015)

    Google Scholar 

  44. Trías, E., Mazo, J.J., Orlando, T.P.: Discrete breathers in nonlinear lattices: experimental detection in a Josephson array. Phys. Rev. Lett. 84, 741 (2000)

    Google Scholar 

  45. Binder, P., Abraimov, D., Ustinov, A.V., Flach, S., Zolotaryuk, Y.: Observation of breathers in Josephson ladders. Phys. Rev. Lett. 84, 745 (2000)

    Google Scholar 

  46. Bronsard, S.A., Pelinovsky, D.E.: New interable semi-discretizations of the coupled nonlinear Schrödinger equations (2017). arXiv:1705.05974v1

  47. Zhang, D.J., Chen, D.Y.: The conservation laws of some discrete soliton systems. Chaos Soliton. Fract. 14, 573–579 (2002)

    MathSciNet  MATH  Google Scholar 

  48. Xu, T., Li, H.J., Zhang, H.J., Li, M., Lan, S.: Darboux transformation and analytic solutions of the discrete PT-symmetric nonlocal nonlinear Schrödinger equation. Appl. Math. Lett. 63, 88–94 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the Editor and reviewers for their valuable suggestions and comments. We would like to express our sincere thanks to other members of our discussion group for their valuable comments. This work has been partially supported by Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University (QXTCP-B201704), the Beijing Natural Science Foundation under Grant Nos. 1202006 and 1153004, and the NSFC under Grant Nos. 61471406 and 11971067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yong Wen.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In this Appendix, we give the determinant form of \(\Delta a^{(0)}_{n}\), \(\Delta b^{(1)}_{n}\), \(\Delta b^{(3)}_{n}\) and \(\Delta _n\) in two-soliton and two-breather. The detail is as follows:

$$\begin{aligned} \begin{aligned} \Delta _n&=\left| \begin{array}{cccc} z_{1}^2 \phi _{1,n} &{}\phi _{1,n} &{}z_{1}^3 \psi _{1,n} &{}z_{1} \psi _{1,n} \\ z_{2}^2 \phi _{2,n} &{}\phi _{2,n} &{}z_{2}^3 \psi _{2,n} &{}z_{2} \psi _{2,n} \\ z_{1}^{*2} \psi ^*_{1,n} &{}z_{1}^{*4} \psi ^*_{1,n} &{}-z^*_{1} \phi ^*_{1,n} &{}-z_{1}^{*3} \phi ^*_{1,n} \\ z_{2}^{*2} \psi ^*_{2,n} &{}z_{2}^{*4} \psi ^*_{2,n} &{}-z^*_{2} \phi ^*_{2,n} &{}-z_{2}^{*3} \phi ^*_{2,n} \end{array} \right| ,\\ \Delta a^{(0)}_{n}&=\left| \begin{array}{cccc} z_{1}^2 \phi _{1,n} &{}-z_{1}^4 \phi _{1,n} &{}z_{1}^3 \psi _{1,n} &{}z_{1} \psi _{1,n} \\ z_{2}^2 \phi _{2,n} &{}-z_{2}^4 \phi _{2,n} &{}z_{2}^3 \psi _{2,n} &{}z_{2} \psi _{2,n} \\ z_{1}^{*2} \psi ^*_{1,n} &{}-\psi ^*_{1,n} &{}-z^*_{1} \phi ^*_{1,n} &{}-z_{1}^{*3} \phi ^*_{1,n} \\ z_{2}^{*2} \psi ^*_{2,n} &{}-\psi ^*_{2,n} &{}-z^*_{2} \phi ^*_{2,n} &{}-z_{2}^{*3} \phi ^*_{2,n} \end{array} \right| , \\ \Delta b^{(1)}_{n}&=\left| \begin{array}{cccc} z_{1}^2 \phi _{1,n} &{}\phi _{1,n} &{}z_{1}^3 \psi _{1,n} &{}-z_{1}^4 \phi _{1,n} \\ z_{2}^2 \phi _{2,n} &{}\phi _{2,n} &{}z_{2}^3 \psi _{2,n} &{}-z_{2}^4 \phi _{2,n} \\ z_{1}^{*2} \psi ^*_{1,n} &{}z_{1}^{*4} \psi ^*_{1,n} &{}-z^*_{1} \phi ^*_{1,n} &{}-\psi ^*_{1,n} \\ z_{2}^{*2} \psi ^*_{2,n} &{}z_{2}^{*4} \psi ^*_{2,n} &{}-z^*_{2} \phi ^*_{2,n} &{}-\psi ^*_{2,n} \end{array} \right| ,\\ \Delta b^{(3)}_{n}&=\left| \begin{array}{cccc} z_{1}^2 \phi _{1,n} &{}\phi _{1,n} &{}-z_{1}^4 \phi _{1,n} &{}z_{1} \psi _{1,n} \\ z_{2}^2 \phi _{2,n} &{}\phi _{2,n} &{}-z_{2}^4 \phi _{2,n} &{}z_{2} \psi _{2,n} \\ z_{1}^{*2} \psi ^*_{1,n} &{}z_{1}^{*4} \psi ^*_{1,n} &{}-\psi ^*_{1,n} &{}-z_{1}^{*3} \phi ^*_{1,n} \\ z_{2}^{*2} \psi ^*_{2,n} &{}z_{2}^{*4} \psi ^*_{2,n} &{}-\psi ^*_{2,n} &{}-z_{2}^{*3} \phi ^*_{2,n} \end{array} \right| . \end{aligned} \end{aligned}$$

Appendix B

In this Appendix, we give the determinant form of \(\Delta a^{(0)}_{n}\), \(\Delta b^{(1)}_{n}\), \(\Delta b^{(5)}_{n}\) and \(\Delta \) in three-soliton. The detail is as follows:

$$\begin{aligned} \Delta _n=\left| \begin{array}{cccccc} z_{1}^4 \phi _{1,n} &{}z_{1}^2 \phi _{1,n} &{}\phi _{1,n} &{}z_{1}^5 \psi _{1,n} &{}z_{1}^3 \psi _{1,n} &{}z_{1} \psi _{1,n} \\ z_{2}^4 \phi _{2,n} &{}z_{2}^2 \phi _{2,n} &{}\phi _{2,n} &{}z_{2}^5 \psi _{2,n} &{}z_{2}^3 \psi _{2,n} &{}z_{2} \psi _{2,n} \\ z_{3}^4 \phi _{3,n} &{}z_{3}^2 \phi _{3,n} &{}\phi _{3,n} &{}z_{3}^5 \psi _{3,n} &{}z_{3}^3 \psi _{3,n} &{}z_{3} \psi _{3,n} \\ z_{1}^{*2} \psi ^*_{1,n} &{}z_{1}^{*4} \psi ^*_{1,n} &{}z_{1}^{*6} \psi ^*_{1,n} &{}-z^*_{1} \phi ^*_{1,n} &{}-z_{1}^{*3} \phi ^*_{1,n} &{}-z_{1}^{*5} \phi ^*_{1,n} \\ z_{2}^{*2} \psi ^*_{2,n} &{}z_{2}^{*4} \psi ^*_{2,n} &{}z_{2}^{*6} \psi ^*_{2,n} &{}-z^*_{2} \phi ^*_{2,n} &{}-z_{2}^{*3} \phi ^*_{2,n} &{}-z_{2}^{*5} \phi ^*_{2,n} \\ z_{3}^{*2} \psi ^*_{3,n} &{}z_{3}^{*4} \psi ^*_{3,n} &{}z_{3}^{*6} \psi ^*_{3,n} &{}-z^*_{3} \phi ^*_{3,n} &{}-z_{3}^{*3} \phi ^*_{3,n} &{}-z_{3}^{*5} \phi ^*_{3,n} \end{array} \right| ,\nonumber \\ \end{aligned}$$
(31)

where \(\Delta a_{n}^{(0)}\),\(\Delta b_{n}^{(1)}\) and \(\Delta b_{n}^{(5)}\) are given from determinant \(\Delta _n\) by replacing its third, sixth and fourth columns with the column vector \((-z^6_1\phi _{1,n}, -z^6_2\phi _{2,n}, -z^6_3\phi _{3,n}, -\psi ^*_{1,n}, -\psi ^*_{2,n}, -\psi ^*_{3,n})^T\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HT., Wen, XY. Soliton elastic interactions and dynamical analysis of a reduced integrable nonlinear Schrödinger system on a triangular-lattice ribbon. Nonlinear Dyn 100, 1571–1587 (2020). https://doi.org/10.1007/s11071-020-05587-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05587-6

Keywords

Navigation