Skip to main content
Log in

Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper concerns an investigation into the control of the transient vibration of an Euler–Bernoulli beam using a symmetric single-sided vibro-impact nonlinear energy sink (SSSVI NES). The non-dimensional system of equations is derived by using the Galerkin method. Consideration and theoretical analysis of the impact dynamics of the device is carried out by introducing the impact modes. This analysis shows that the proposed SSSVI NES has increased complexity in its modes of energy dissipation compared with the single-sided vibro-impact NES (SSVI NES). Simulations are conducted with a wide variety of impulse loads to determine the optimum parameters of the SSSVI NES. The beam vibration suppression performance of the optimized SSSVI NES is then compared with both the SSVI NES and the case in which the NES is locked. When these devices have the same total mass, the SSSVI NES has superior vibration suppression performance, especially when the damping in the control device is light. The vibration suppression performance of the SSSVI NES is investigated when its location along the beam is varied. The effect of the clearance between the NES masses and the impact surface on the vibration suppression performance of the SSSVI NES is also investigated, as well as the device’s damping and the coefficient of restitution. Finally, the efficacy of the SSSVI NES device for seismic loads is investigated. The numerical results of this analysis show that the optimized SSSVI NES can effectively reduce the energy in the system and suppress the maximum bending moment and shear stress of the host cantilever beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Vakakis, A.F., Gendelman, O.V., Bergman, L., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-9130-8

    Book  MATH  Google Scholar 

  2. Lu, Z., Wang, Z., Zhou, Y., Lu, X.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018). https://doi.org/10.1016/j.jsv.2018.02.052

    Article  Google Scholar 

  3. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123, 324 (2001). https://doi.org/10.1115/1.1368883

    Article  Google Scholar 

  4. Gendelman, O., Manevitch, L.I., Vakakis, A.F., M’Closkey, R.: Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68, 34 (2001). https://doi.org/10.1115/1.1345524

    Article  MathSciNet  MATH  Google Scholar 

  5. Lee, Y.S., Vakakis, A., Bergman, L., McFarland, D.M., Kerschen, G.: Suppression aeroelastic instability using broadband passive targeted energy transfers, part 1: theory. AIAA J. 45, 693–711 (2007). https://doi.org/10.2514/1.24062

    Article  Google Scholar 

  6. Lee, Y.S., Kerschen, G., McFarland, D.M., Hill, W.J., Nichkawde, C., Strganac, T.W., Bergman, L.A., Vakakis, A.F.: Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments. AIAA J. 45, 2391–2400 (2007). https://doi.org/10.2514/1.28300

    Article  Google Scholar 

  7. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes. Nonlinear Dyn. 51, 31–46 (2007). https://doi.org/10.1007/s11071-006-9167-0

    Article  MATH  Google Scholar 

  8. Starosvetsky, Y., Gendelman, O.V.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: optimization of a nonlinear vibration absorber. Nonlinear Dyn. 51, 47–57 (2007). https://doi.org/10.1007/s11071-006-9168-z

    Article  MATH  Google Scholar 

  9. Starosvetsky, Y., Gendelman, O.V.: Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning. J. Sound Vib. 315, 746–765 (2008). https://doi.org/10.1016/j.jsv.2007.12.023

    Article  Google Scholar 

  10. Sapsis, T.P., Vakakis, A.F., Bergman, L.A.: Effect of stochasticity on targeted energy transfer from a linear medium to a strongly nonlinear attachment. Probab. Eng. Mech. 26, 119–133 (2011). https://doi.org/10.1016/j.probengmech.2010.11.006

    Article  Google Scholar 

  11. Lamarque, C.-H., Gendelman, O.V., Ture Savadkoohi, A., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech. 221, 175–200 (2011). https://doi.org/10.1007/s00707-011-0492-0

    Article  MATH  Google Scholar 

  12. Starosvetsky, Y., Gendelman, O.V.: Vibration absorption in systems with a nonlinear energy sink: nonlinear damping. J. Sound Vib. 324, 916–939 (2009). https://doi.org/10.1016/j.jsv.2009.02.052

    Article  Google Scholar 

  13. Andersen, D., Starosvetsky, Y., Vakakis, A., Bergman, L.: Dynamic instabilities in coupled oscillators induced by geometrically nonlinear damping. Nonlinear Dyn. 67, 807–827 (2012). https://doi.org/10.1007/s11071-011-0028-0

    Article  MathSciNet  Google Scholar 

  14. Gendelman, O.V., Alloni, A.: Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358, 30114 (2015). https://doi.org/10.1016/j.jsv.2015.08.020

    Article  Google Scholar 

  15. AL-Shudeifat, M.A., Wierschem, N.E., Bergman, L.A., Vakakis, A.F.: Numerical and Experimental Investigations of a Rotating Nonlinear Energy Sink, pp. 763–779. Meccanica, Vancouver (2017). https://doi.org/10.1007/s11012-016-0422-2

    Book  Google Scholar 

  16. Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300, 522–551 (2007). https://doi.org/10.1016/j.jsv.2006.06.074

    Article  Google Scholar 

  17. Javidialesaadi, A., Wierschem, N.E.: An inerter-enhanced nonlinear energy sink. Mech. Syst. Signal Process. 129, 449–454 (2019). https://doi.org/10.1016/j.ymssp.2019.04.047

    Article  Google Scholar 

  18. Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. J. Appl. Mech. 68, 42 (2001). https://doi.org/10.1115/1.1345525

    Article  MathSciNet  MATH  Google Scholar 

  19. Xiong, L., Tang, L., Liu, K., Mace, B.R.: Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink. J. Phys. Appl. Phys. 51, 185502 (2018). https://doi.org/10.1088/1361-6463/aab9e3

    Article  Google Scholar 

  20. Zhang, Y., Tang, L., Liu, K.: Piezoelectric energy harvesting with a nonlinear energy sink. J. Intell. Mater. Syst. Struct. 28, 307–322 (2017). https://doi.org/10.1177/1045389X16642301

    Article  Google Scholar 

  21. Gendelman, O.V.: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 25, 237–253 (2001). https://doi.org/10.1023/A:1012967003477

    Article  MATH  Google Scholar 

  22. Motato, E., Haris, A., Theodossiades, S., Mohammadpour, M., Rahnejat, H., Kelly, P., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Targeted energy transfer and modal energy redistribution in automotive drivetrains. Nonlinear Dyn. 87, 169–190 (2017). https://doi.org/10.1007/s11071-016-3034-4

    Article  MATH  Google Scholar 

  23. Blanchard, A., Bergman, L.A., Vakakis, A.F.: Passive suppression mechanisms in laminar vortex-induced vibration of a sprung cylinder with a strongly nonlinear, dissipative oscillator. J. Appl. Mech. 84, 081003 (2017). https://doi.org/10.1115/1.4036942

    Article  Google Scholar 

  24. Gendelman, O.V., Sapsis, T., Vakakis, A.F., Bergman, L.A.: Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators. J. Sound Vib. 330, 1–8 (2011). https://doi.org/10.1016/j.jsv.2010.08.014

    Article  Google Scholar 

  25. Wierschem, N.E., Quinn, D.D., Hubbard, S.A., Al-Shudeifat, M.A., McFarland, D.M., Luo, J., Fahnestock, L.A., Spencer, B.F., Vakakis, A.F., Bergman, L.A.: Passive damping enhancement of a two-degree-of-freedom system through a strongly nonlinear two-degree-of-freedom attachment. J. Sound Vib. 331, 5393–5407 (2012). https://doi.org/10.1016/j.jsv.2012.06.023

    Article  Google Scholar 

  26. AL-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76, 1905–1920 (2014). https://doi.org/10.1007/s11071-014-1256-x

    Article  MathSciNet  MATH  Google Scholar 

  27. Luo, J., Wierschem, N.E., Fahnestock, L.A., Spencer, B.F., Quinn, D.D., McFarland, D.M., Vakakis, A.F., Bergman, L.A.: Design, simulation, and large-scale testing of an innovative vibration mitigation device employing essentially nonlinear elastomeric springs. Earthq. Eng. Struct. Dyn. 43, 1829–1851 (2014). https://doi.org/10.1002/eqe.2424

    Article  Google Scholar 

  28. Sigalov, G., Gendelman, O.V., AL-Shudeifat, M.A., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 69, 1693–1704 (2012). https://doi.org/10.1007/s11071-012-0379-1

    Article  MathSciNet  Google Scholar 

  29. Wang, J., Wierschem, N.E., Spencer Jr., B.F., Lu, X.: Track nonlinear energy sink for rapid response reduction in building structures. J. Eng. Mech. 141, 04014104 (2014). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000824

    Article  Google Scholar 

  30. Wang, J., Wierschem, N., Spencer, B.F., Lu, X.: Experimental study of track nonlinear energy sinks for dynamic response reduction. Eng. Struct. 94, 9–15 (2015). https://doi.org/10.1016/j.engstruct.2015.03.007

    Article  Google Scholar 

  31. Li, W., Wierschem, N.E., Li, X., Yang, T., Brennan, M.J.: Numerical study of a single-sided vibro-impact track nonlinear energy sink considering horizontal and vertical dynamics. J. Vib. Acoust. 141, 061013 (2019). https://doi.org/10.1115/1.4044486

    Article  Google Scholar 

  32. Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50, 651–677 (2007). https://doi.org/10.1007/s11071-006-9189-7

    Article  MATH  Google Scholar 

  33. Karayannis, I., Vakakis, A.F., Georgiades, F.: Vibro-impact attachments as shock absorbers. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 222, 1899–1908 (2008). https://doi.org/10.1243/09544062JMES864

    Article  Google Scholar 

  34. Nucera, F., Lo Iacono, F., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: experimental results. J. Sound Vib. 313, 57–76 (2008). https://doi.org/10.1016/j.jsv.2007.11.018

    Article  Google Scholar 

  35. Nucera, F., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: computational results. J. Sound Vib. 329, 2973–2994 (2010). https://doi.org/10.1016/j.jsv.2010.01.020

    Article  Google Scholar 

  36. Lee, Y.S., Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Phys. Nonlinear Phenom. 238, 1868–1896 (2009). https://doi.org/10.1016/j.physd.2009.06.013

    Article  MATH  Google Scholar 

  37. Ahmadi, M., Attari, N.K.A., Shahrouzi, M.: Structural seismic response mitigation using optimized vibro-impact nonlinear energy sinks. J. Earthq. Eng. 19, 193–219 (2015). https://doi.org/10.1080/13632469.2014.962671

    Article  Google Scholar 

  38. Moore, K.J., Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Wavelet-bounded empirical mode decomposition for vibro-impact analysis. Nonlinear Dyn. 93, 1559–1577 (2018). https://doi.org/10.1007/s11071-018-4276-0

    Article  Google Scholar 

  39. AL-Shudeifat, M.A., Wierschem, N., Quinn, D.D., Vakakis, A.F., Bergman, L.A., Spencer, B.F.: Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation. Int. J. Non-Linear Mech. 52, 96–109 (2013). https://doi.org/10.1016/j.ijnonlinmec.2013.02.004

    Article  Google Scholar 

  40. Luo, J., Wierschem, N.E., Hubbard, S.A., Fahnestock, L.A., Dane Quinn, D., Michael McFarland, D., Spencer, B.F., Vakakis, A.F., Bergman, L.A.: Large-scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation. Eng. Struct. 77, 34–48 (2014). https://doi.org/10.1016/j.engstruct.2014.07.020

    Article  Google Scholar 

  41. Wierschem, N.E., Hubbard, S.A., Luo, J., Fahnestock, L.A., Spencer, B.F., McFarland, D.M., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers. J. Sound Vib. 389, 52–72 (2017). https://doi.org/10.1016/j.jsv.2016.11.003

    Article  Google Scholar 

  42. Li, W., Wierschem, N.E., Li, X., Yang, T.: On the energy transfer mechanism of the single-sided vibro-impact nonlinear energy sink. J. Sound Vib. 437, 166–179 (2018). https://doi.org/10.1016/j.jsv.2018.08.057

    Article  Google Scholar 

  43. Luo, J., Wierschem, N.E., Hubbard, S.A., Fahnestock, L.A., Quinn, D.D., McFarland, D.M., Spencer Jr, B.F., Vakakis, A.F., Bergman, L.A.: Seismic mitigation performance of multiple nonlinear energy sinks attached to a large-scale nine-story test structure. In: Proceedings in Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics. Vienna University of Technology, Vienna, Austria (2013)

  44. Ahmadabadi, Z.N., Khadem, S.E.: Nonlinear vibration control of a cantilever beam by a nonlinear energy sink. Mech. Mach. Theory. 50, 134–149 (2012). https://doi.org/10.1016/j.mechmachtheory.2011.11.007

    Article  Google Scholar 

  45. Parseh, M., Dardel, M., Ghasemi, M.H.: Performance comparison of nonlinear energy sink and linear tuned mass damper in steady-state dynamics of a linear beam. Nonlinear Dyn. 81, 1981–2002 (2015). https://doi.org/10.1007/s11071-015-2120-3

    Article  MathSciNet  Google Scholar 

  46. Zhang, Y.-W., Yuan, B., Fang, B., Chen, L.-Q.: Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink. Nonlinear Dyn. 87, 1159–1167 (2017). https://doi.org/10.1007/s11071-016-3107-4

    Article  Google Scholar 

  47. Chen, J.E., He, W., Zhang, W., Yao, M.H., Liu, J., Sun, M.: Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks. Nonlinear Dyn. 91, 885–904 (2018). https://doi.org/10.1007/s11071-017-3917-z

    Article  Google Scholar 

  48. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. 83, 1–22 (2016). https://doi.org/10.1007/s11071-015-2304-x

    Article  MathSciNet  Google Scholar 

  49. Fang, X., Wen, J., Yin, J., Yu, D.: Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dyn. 87, 2677–2695 (2017). https://doi.org/10.1007/s11071-016-3220-4

    Article  Google Scholar 

  50. Azeez, M.F.A., Vakakis, A.F.: Proper orthogonal decomposition (POD) of a class of vibroimpact oscillations. J. Sound Vib. 240, 859–889 (2001). https://doi.org/10.1006/jsvi.2000.3264

    Article  Google Scholar 

  51. Ritto, T.G., Buezas, F.S., Sampaio, R.: A new measure of efficiency for model reduction: application to a vibroimpact system. J. Sound Vib. 330, 1977–1984 (2011). https://doi.org/10.1016/j.jsv.2010.11.004

    Article  Google Scholar 

  52. Ritto, T.G., Buezas, F.S., Sampaio, R.: Proper orthogonal decomposition for model reduction of a vibroimpact system. J. Braz. Soc. Mech. Sci. Eng. 34, 330–340 (2012). https://doi.org/10.1590/s1678-58782012000300013

    Article  Google Scholar 

  53. Ding, H., Chen, L.-Q., Yang, S.-P.: Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load. J. Sound Vib. 331, 2426–2442 (2012). https://doi.org/10.1016/j.jsv.2011.12.036

    Article  Google Scholar 

  54. Pacific Earthquake Engineering Research Center (PEER): PEER Ground Motion Database. https://ngawest2.berkeley.edu/ (2019). Accessed 26 June 2019

Download references

Acknowledgements

The authors gratefully acknowledge the China Scholarship Council which supported the first author’s visit to the University of Tennessee, Knoxville and the financial support from the National Science Foundation of China (No. 51375103). The authors wish to thank the reviewers for their careful and constructive suggestions that have led to improvements in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas E. Wierschem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wierschem, N.E., Li, X. et al. Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam. Nonlinear Dyn 100, 951–971 (2020). https://doi.org/10.1007/s11071-020-05571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05571-0

Keywords

Navigation