Skip to main content
Log in

Normal-form analysis of the cusp-transcritical interaction: applications in population dynamics

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Bistability, the presence of alternative stable states, is an important feature of population models as it indicates that long-term predictions are dependent on the current population density. Two distinct kinds of bistability re-occur in population modelling studies, Allee Bistability and Positive Bistability. In this article, we show that a novel codimension-3 bifurcation, the cusp-transcritical interaction, can act as an organising centre for ordinary differential equations that exhibit both Allee Bistability and Positive Bistability. We first show how a normal form for cusp-transcritical interactions emerges from the unfolding of a particular one-dimensional degeneracy. We then illustrate the ecological relevance of the cusp-transcritical interaction. Finally, we provide a comprehensive example of normal-form analysis of an existing population model that demonstrates the occurrence of the codimension-3 bifurcation. We note that Allee Bistability and Positive Bistability may manifest unexpectedly in complex, ecological models, and therefore, this bifurcation-focused approach can provide valuable insight into the behaviour of newly developed ecosystem models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Turchin, P.: Complex Population Dynamics: A Theoretical/empirical Synthesis, vol. 35. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  2. Ehrlich, P.R., Birch, L.C.: The “balance of nature” and “population control”. Am. Nat. 101(918), 97–107 (1967)

    Article  Google Scholar 

  3. Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B.: Catastrophic shifts in ecosystems. Nature 413(6856), 591 (2001)

    Article  Google Scholar 

  4. Beisner, B.E., Haydon, D.T., Cuddington, K.: Alternative stable states in ecology. Front. Ecol. Environ. 1(7), 376–382 (2003)

    Article  Google Scholar 

  5. Stephens, P.A., Sutherland, W.J., Freckleton, R.P.: What is the allee effect? Oikos 87, 185–190 (1999)

    Article  Google Scholar 

  6. Stephens, P.A., Sutherland, W.J.: Consequences of the allee effect for behaviour, ecology and conservation. Trends Ecol. Evolut. 14(10), 401–405 (1999)

    Article  Google Scholar 

  7. Courchamp, F., Berec, L., Gascoigne, J.: Allee Effects in Ecology and Conservation. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  8. Messier, F., Crête, M.: Moose-wolf dynamics and the natural regulation of moose populations. Oecologia 65(4), 503–512 (1985)

    Article  Google Scholar 

  9. Ballard, W.B., Lutz, D., Keegan, T.W., Carpenter, L.H., deVos Jr, J.C.: Deer-predator relationships: a review of recent North American studies with emphasis on mule and black-tailed deer. Wildl. Soc. Bull. 29(1), 99–115 (2001)

    Google Scholar 

  10. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  11. Ludwig, D., Jones, D.D., Holling, C.S.: Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol. 42, 315–332 (1978)

    Article  Google Scholar 

  12. Saputra, K.V.I., Van Veen, L., Quispel, G.R.W.: The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete Continuous Dyn. Syst. Ser. B 14, 233–250 (2010)

    Article  MathSciNet  Google Scholar 

  13. Saputra, K.V.I.: Dynamical systems with a codimension-one invariant manifold: the unfoldings and its bifurcations. Int. J. Bifurc. Chaos 25(06), 1550,091 (2015)

    Article  MathSciNet  Google Scholar 

  14. Donohue, J.G., Piiroinen, P.T.: A technique for analysis of density dependence in population models. Theor. Ecol. 11(4), 465–477 (2018)

    Article  Google Scholar 

  15. Thom, R.: Structural stability and morphogenesis: An outline of a general theory of models, trans. dh fowler. Reading, Massachusetts (1975)

  16. Arnol’d, V.I.: Catastrophe Theory. Springer, Berlin (2003)

    MATH  Google Scholar 

  17. Harlim, J., Langford, W.F.: The cusp-hopf bifurcation. Int. J. Bifurc. Chaos 17(08), 2547–2570 (2007)

    Article  MathSciNet  Google Scholar 

  18. Bella, G., Mattana, P.: Bistability of equilibria and the 2-tori dynamics in an endogenous growth model undergoing the cusp-hopf singularity. Nonlinear Anal. Real World Appl. 39, 185–201 (2018)

    Article  MathSciNet  Google Scholar 

  19. van Veen, L., Hoti, M.: Saddle-node–transcritical interactions in a stressed predator-prey-nutrient system. arXiv preprint (2018) arXiv:1809.00108

  20. van Kooten, T., de Roos, A.M., Persson, L.: Bistability and an allee effect as emergent consequences of stage-specific predation. J. Theor. Biol. 237(1), 67–74 (2005)

    Article  MathSciNet  Google Scholar 

  21. Thompson, J.M.T., Stewart, H., Ueda, Y.: Safe, explosive, and dangerous bifurcations in dissipative dynamical systems. Phys. Rev. E 49(2), 1019 (1994)

    Article  MathSciNet  Google Scholar 

  22. Golubitsky, M.: An introduction to catastrophe theory and its applications. SIAM Rev. 20(2), 352–387 (1978)

    Article  MathSciNet  Google Scholar 

  23. Sibly, R.M., Barker, D., Denham, M.C., Hone, J., Pagel, M.: On the regulation of populations of mammals, birds, fish, and insects. Science 309(5734), 607–610 (2005)

    Article  Google Scholar 

  24. Courchamp, F., Clutton-Brock, T., Grenfell, B.: Inverse density dependence and the allee effect. Trends Ecol. Evolut. 14(10), 405–410 (1999)

    Article  Google Scholar 

  25. Gascoigne, J.C., Lipcius, R.N.: Allee effects driven by predation. J. Appl. Ecol. 41, 801–810 (2004)

    Article  Google Scholar 

  26. Huss, M., Nilsson, K.A.: Experimental evidence for emergent facilitation: promoting the existence of an invertebrate predator by killing its prey. J. Anim. Ecol. 80(3), 615–621 (2011)

    Article  Google Scholar 

  27. de Roos, A.M., Schellekens, T., Van Kooten, T., Persson, L.: Stage-specific predator species help each other to persist while competing for a single prey. Proc. Natl. Acad. Sci. 105(37), 13,930–13,935 (2008)

    Article  Google Scholar 

  28. de Roos, A.M., Persson, L., Thieme, H.R.: Emergent allee effects in top predators feeding on structured prey populations. Proc. R. Soc. Lond. B Biol. Sci. 270(1515), 611–618 (2003)

    Article  Google Scholar 

  29. Dodds, P.S., Watts, D.J.: A generalized model of social and biological contagion. J. Theor. Biol. 232(4), 587–604 (2005)

    Article  MathSciNet  Google Scholar 

  30. Bradley, D.J., May, R.M.: Consequences of helminth aggregation for the dynamics of schistosomiasis. Trans. R. Soc. Trop. Med. Hyg. 72(3), 262–273 (1978)

    Article  Google Scholar 

  31. May, R.M.: Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269(5628), 471 (1977)

    Article  Google Scholar 

  32. Evans, M.R., Grimm, V., Johst, K., Knuuttila, T., De Langhe, R., Lessells, C.M., Merz, M., O’Malley, M.A., Orzack, S.H., Weisberg, M., et al.: Do simple models lead to generality in ecology? Trends Ecol. Evolut. 28(10), 578–583 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This publication has emanated from research conducted with the financial support of Science Foundation Ireland under the grant number SFI/13/IA/1923.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Donohue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mw 59 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donohue, J.G., Piiroinen, P.T. Normal-form analysis of the cusp-transcritical interaction: applications in population dynamics. Nonlinear Dyn 100, 1741–1753 (2020). https://doi.org/10.1007/s11071-020-05556-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05556-z

Keywords

Navigation