Skip to main content
Log in

The networked cooperative dynamics of adjusting signal strength based on information quantity

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We present a computational model which mainly concentrates on the effect of adjusting the signal strength of game from an agent to its a neighbor by considering the information quantity in individual’s database to study the evolutionary prisoner’s dilemma game on directed-weighted square lattices. In this model, each agent considers the current and historical payoff both obtained from the same neighbor, and regulates the strength of sending signal according to these information. More specifically, for paired agents x and y in network, x will increase the signal strength from it to y in case of it obtains current income higher than the historical payoff; conversely, x will reduce the signal strength because its current income less than the historical one. The simulation results show that this evolutionary rule not only can help cooperators get out of danger of extinction, but also can hugely boost the cooperation in population. Interestingly, for a fixed cost–benefit ratio r (\(0<r<0.246\)), there exists the minimal information quantity, resulting in the higher cooperation level (even can reach the status of full cooperation) due to the positive feedback effect in system. Besides, by a modified pair, approximation method qualitatively verifies the role of adjusting signal strength according to the information quantity on cooperation. We also explore the reason of emergence and persistence of cooperation by a few representative snapshots in system. Our results may enhance the understanding of evolutionary dynamics with stochastic interaction in graph-structured populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hauert, C., Szabó, G.: Game theory and physics. Am. J. Phys. 73(5), 405–414 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Shigaki, K., Tanimoto, J., Wang, Z., Kokubo, S., et al.: Referring to the social performance promotes cooperation in spatial Prisoner’s Dilemma games. Phys. Rev. E 86(3), 031141 (2012)

    Google Scholar 

  3. Christakis, N.A., Fowler, J.H.: Friendship and natural selection. Proc. Natl. Acad. Sci. USA 111(3), 10796–10801 (2014)

    Google Scholar 

  4. Liu, L.J., Chen, X.J., Perc, M.: Evolutionary dynamics of cooperation in the public goods game with pool exclusion strategies. Nonlinear Dyn. 97(1), 749–766 (2019)

    MATH  Google Scholar 

  5. Li, J.Q., Zhang, C.Y., Sun, Q.L., Chen, Z.Q.: Changing intensity of interaction can resolve prisoner’s dilemmas. EPL 113(5), 58002 (2016)

    Google Scholar 

  6. Zhang, J.L., Chen, Z.Q., Liu, Z.X.: Fostering cooperation of selfish agents through public goods in relation to the loners. Phys. Rev. E 93(3), 032320 (2016)

    MathSciNet  Google Scholar 

  7. Zhang, J.L., Xu, Z.M., Chen, Z.Q.: Effects of strategy switching and network topology on decision-making in multi-agent systems. Int. J. Syst. Sci 49(9), 1934–1949 (2018)

    MathSciNet  Google Scholar 

  8. Shi, L., Shen, C., Geng, Y.N., et al.: Winner-weaken-loser-strengthen rule leads to optimally cooperative interdependent networks. Nonlinear Dyn. 96(1), 49–56 (2019)

    Google Scholar 

  9. Wang, Z., Kokubo, S., Jusup, M., Tanimoto, J.: Universal scaling for the dilemma strength in evolutionary games. Phys. Life Rev. 14, 1–30 (2015)

    Google Scholar 

  10. Zhang, C.Y., Liu, Z.X., Sun, Q.L.: Altruism in multiplayer snowdrift games with threshold and punishment. EPL 111(5), 58004 (2015)

    Google Scholar 

  11. Chen, W., Wu, T., Li, Z.W., Wang, L.: Friendship-based partner switching promotes cooperation in heterogeneous populations. Physica A 443, 192–199 (2016)

    Google Scholar 

  12. Zhang, J.L., Weissing, F.J., Cao, M.: Fixation of competing strategies when interacting agents differ in the time scale of strategy updating. Phys. Rev. E 94(3), 032407 (2016)

    Google Scholar 

  13. Li, J.Q., Dang, J.W., Zhang, J.W.: Length of information-based bidirectional choice in spatial prisoner’s dilemma. Appl. Math. Comput. 369, 124837 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Voelkl, B.: The evolution of generalized reciprocity in social interaction networks. Theor. Popul. Biol. 104, 17–25 (2015)

    MATH  Google Scholar 

  15. Quek, H.-Y., Tan, K.C., Goh, C.-K., Abbass, H.A.: Evolution and incremental learning in the iterated prisoner’s dilemma. IEEE Trans. Evol. Comput. 13(2), 303–320 (2009)

    Google Scholar 

  16. Cong, R., Wu, T., Qiu, Y.Y., Wang, L.: Time scales in evolutionary game on adaptive networks. Phys. Lett. A 378(13), 950–955 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Xiao, Y.P., Chen, D.Q., et al.: Rumor propagation dynamic model based on evolutionary game and anti-rumor. Nonlinear Dyn. 95(1), 523–539 (2019)

    Google Scholar 

  18. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)

    Google Scholar 

  19. Rong, Z.H., Wu, Z.X., Chen, G.R.: Coevolution of strategy-selection time scale and cooperation in spatial prisoner’s dilemma game. EPL 102(6), 68005 (2013)

    Google Scholar 

  20. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006)

    Google Scholar 

  21. Szabó, G., Fath, G.: Evolutionary games on graphs. Phys. Rep. 446(4), 97–216 (2007)

    MathSciNet  Google Scholar 

  22. Zhang, J.L., Zhang, C.Y., Cao, M.: How insurance affects altruistic provision in threshold public goods games. Sci. Rep. 5, 9098 (2015)

    Google Scholar 

  23. Tanimoto, J.: Simultaneously selecting appropriate partners for gaming and strategy adaptation to enhance network reciprocity in the prisoner’s dilemma. Phys. Rev. E 89(1), 012106 (2014)

    Google Scholar 

  24. Santos, F.C., Pacheco, M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett. 95(9), 098104 (2005)

    Google Scholar 

  25. Santos, F.C., Pacheco, J.M.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl. Acad. Sci. USA 103(9), 3490–3494 (2006)

    Google Scholar 

  26. Ohtsuki, H., Nowak, M.A., Pacheco, J.M.: Breaking the symmetry between interaction and replacement in evolutionary dynamics on graphs. Phys. Rev. Lett. 98(10), 108106 (2007)

    Google Scholar 

  27. Rong, Z.H., Wu, Z.X., Wang, W.X.: Emergence of cooperation through coevolving time scale in spatial prisoner’s dilemma. Phys. Rev. E 82(2), 026101 (2010)

    Google Scholar 

  28. Wang, Z., Perc, M.: Aspiring to the fittest and promotion of cooperation in the prisoner’s dilemma game. Phys. Rev. E 82(2), 021115 (2010)

    Google Scholar 

  29. Chen, X.J., Wang, L.: Cooperation enhanced by moderate tolerance ranges in myopically selective interactions. Phys. Rev. E 80(4), 046109 (2009)

    Google Scholar 

  30. Perc, M., Szolnoki, A.: A double-edged sword: benefits and pitfalls of heterogeneous punishment in evolutionary inspection games. Sci. Rep. 5, 11027 (2015)

    Google Scholar 

  31. Szolnoki, A., Perc, M.: Coevolution of teaching activity promotes cooperation. New J. Phys. 10, 043036 (2008)

    Google Scholar 

  32. Chong, S.Y., Yao, X.: Behavioral diversity, choices and noise in the iterated prisoner’s dilemma. IEEE Trans. Evol. Comput. 9(6), 540–551 (2005)

    Google Scholar 

  33. Chen, Y.Z., Huang, Z.G., Wang, S.J., et al.: Diversity of rationality affects the evolution of cooperation. Phys. Rev. E 79(5), 055101 (2009)

    Google Scholar 

  34. Liu, Y.K., Chen, X.J., Zhang, L., et al.: Win-stay-lose-learn promotes cooperation in the spatial Prisoner’s dilemma game. PLoS ONE 7(2), e30689 (2012)

    Google Scholar 

  35. Szolnoki, A., Perc, M.: Emergence of multilevel selection in the prisoner’s dilemma game on coevolving random networks. New J. Phys. 11, 093033 (2009)

    Google Scholar 

  36. Perc, M.: Double resonance in cooperation induced by noise and network variation for an evolutionary prisoner’s dilemma. New J. Phys. 8, 183 (2006)

    Google Scholar 

  37. Perc, M., Szolnoki, A.: Coevolutionary games–a mini review. BioSystems 99(2), 109–125 (2010)

    Google Scholar 

  38. Szolnoki, A., Perc, M., Danku, Z.: Making new connections towards cooperation in the prisoner’s dilemma game. EPL 84(5), 50007 (2008)

    Google Scholar 

  39. Li, J.Q., Zhang, C.Y., Sun, Q.L., Chen, Z.Q.: Coevolution between strategy and social networks structure promotes cooperation. Chaos Soliton Fract 77, 253–263 (2015)

    MATH  Google Scholar 

  40. Zimmermann, M.G., Eguiluz, V.M., San Miguel, M.: Coevolution of dynamical states and interactions in dynamic networks. Phys. Rev. E 69(6), 065102 (2004)

    Google Scholar 

  41. Szolnoki, A., Perc, M.: Resolving social dilemmas on evolving random networks. EPL 86(3), 30007 (2009)

    Google Scholar 

  42. Fu, F., Hauert, C., Nowak, M.A., Wang, L.: Reputation-based partner choice promotes cooperation in social networks. Phys. Rev. E 78(2), 026117 (2008)

    Google Scholar 

  43. Pacheco, J.M., Traulsen, A., Nowak, M.A.: Coevolution of strategy and structure in complex networks with dynamical linking. Phys. Rev. Lett. 97, 258103 (2006)

    Google Scholar 

  44. Wang, J., Suri, S., Watts, D.J.: Cooperation and assortativity with dynamic partner updating. Proc. Natl. Acad. Sci. USA 109(36), 14363–14368 (2012)

    Google Scholar 

  45. Fehl, K., van der Post, D.J., Semmann, D.: Coevolution of behaviour and social network structure promotes human cooperation. Ecol. Lett. 14(6), 546–551 (2011)

    Google Scholar 

  46. Yang, H.X., Wu, Z.X., Wang, B.H.: Role of aspiration-induced migration in cooperation. Phys. Rev. E 81(6), 065101 (2010)

    Google Scholar 

  47. Li, Y., Ye, H., Zhang, H.: Evolution of cooperation driven by social-welfare-based migration. Physica A 445, 48–56 (2016)

    Google Scholar 

  48. Wang, W.X., Yang, R., Lai, Y.C.: Cascade of elimination and emergence of pure cooperation in coevolutionary games on networks. Phys. Rev. E 81(3), 035102 (2010)

    Google Scholar 

  49. Wang, Z., Wang, L., Szolnoki, A., Perc, M.: Evolutionary games on multilayer networks: a colloquium. Eur. Phys. J. B 88(5), 124 (2015)

    Google Scholar 

  50. Xia, C.Y., Meng, X.K., Wang, Z.: Heterogeneous coupling between interdependent lattices promotes the cooperation in the Prisoner’s dilemma game. PLoS ONE 10(6), e0129542 (2015)

    Google Scholar 

  51. Wang, Z., Szolnoki, A., Perc, M.: Rewarding evolutionary fitness with links between populations promotes cooperation. J. Theor. Biol. 349, 50–56 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Wang, Z., Wang, L., Perc, M.: Degree mixing in multilayer networks impedes the evolution of cooperation. Phys. Rev. E 89(5), 052813 (2014)

    Google Scholar 

  53. Traulsen, A., Nowak, M.A., Pacheco, J.M.: Stochastic payoff evaluation increases the temperature of selection. J. Theor. Biol. 244(2), 349–356 (2007)

    MathSciNet  Google Scholar 

  54. Chen, X.J., Fu, F., Wang, L.: Interaction stochasticity supports cooperation in spatial Prisoner’s dilemma. Phys. Rev. E 78(5), 051120 (2008)

    Google Scholar 

  55. Li, J.Q., Zhang, C.Y., Sun, Q.L., Chen, Z.Q., Zhang, J.L.: Changing the intensity of interaction based on individual behavior in the iterated Prisoner’s dilemma game. IEEE Trans. Evol. Comput. 21(4), 506–517 (2017)

    Google Scholar 

  56. Tanimoto, J., Sagara, H.: Relationship between dilemma occurrence and the existence of a weakly dominant strategy in a two-player symmetric game. BioSystems 90(1), 105–114 (2007)

    Google Scholar 

  57. Szabó, G., Toke, C.: Evolutionary Prisoner’s dilemma game on a square lattice. Phys. Rev. E 58(1), 69–73 (1998)

    Google Scholar 

  58. Li, Z., Yang, Z., Wu, T., Wang, L.: Aspiration-based partner switching boosts cooperation in social dilemmas. PLoS ONE 9, e97866 (2014)

    Google Scholar 

  59. Hauert, C., Doebeli, M.: Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature 428(6983), 643–646 (2004)

    Google Scholar 

  60. Xia, C.Y., Wang, L., Sun, S.W., Wang, J.: An SIR model with infection delay and propagation vector in complex networks. Nonlinear Dyn. 69(3), 927–934 (2012)

    MathSciNet  Google Scholar 

  61. Xu, X.L., Chen, Z.Q., Si, G.Y., Hu, X.F., Jiang, Y.Q., Xu, X.S.: The chaotic dynamics of the social behavior selection networks in crowd simulation. Nonlinear Dyn. 64(1), 117–126 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (No.61963013) and Innovation Capacity Improvement Project of the Education Department of Gansu Province (2019A-107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaqi Li or Ju H. Park.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest concerning the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Park, J.H., Zhang, J. et al. The networked cooperative dynamics of adjusting signal strength based on information quantity. Nonlinear Dyn 100, 831–847 (2020). https://doi.org/10.1007/s11071-020-05544-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05544-3

Keywords

Navigation