Skip to main content
Log in

Finite-time adaptive fuzzy command filtered control for nonlinear systems with indifferentiable non-affine functions

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper mainly addresses the finite-time tracking problem of pure-feedback systems with indifferentiable non-affine functions. A novel adaptive fuzzy finite-time command filtered scheme is proposed by remodeling the non-affine functions. The control scheme consists of the fuzzy logic systems with modified minimal learning parameter technique, the command filtered scheme and the finite-time error compensation system. The finite-time convergences of tracking error and all closed-loop signals are proved by using the finite-time stability theory. The contributions of this paper are that the new controller can achieve finite-time convergence, relax the restriction conditions that the non-affine functions must be derivative and strictly positive or negative and reduce the computational load significantly. Finally, a simulation example is given to validate the effectiveness of the developed control technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Niu, H., Yu, J.P., Yu, H.S., Lin, C., Zhao, L.: Adaptive fuzzy output feedback and command filtering error compensation control for permanent magnet synchronous motors in electric vehicle drive systems. J. Frankl. Inst. 354(15), 6610 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Ji, Y.H., Zhou, H.L., Zong, Q.: Adaptive neural network command filtered backstepping control of pure-feedback systems in presence of full state constraints. Int. J. Adapt. Control Signal Process. 33(5), 829 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Yu, Z.X., Yan, H.C., Li, S.G., Dong, Y.: Approximation-based adaptive tracking control for switched stochastic strict-feedback nonlinear time-delay systems with sector-bounded quantization input. IEEE Trans. Syst. Man Cybern. Syst. 48(12), 2145 (2018)

    Google Scholar 

  4. Li, D.P., Li, D.J., Liu, Y.J., Tong, S.C., Chen, C.L.P.: Approximation-based adaptive neural tracking control of nonlinear MIMO unknown time-varying delay systems with full state constraints. IEEE Trans. Cybern. 47(10), 3100 (2017)

    Google Scholar 

  5. Wang, M., Ge, S.Z.S., Hong, K.S.: Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays. IEEE Trans. Neural Netw. 21(11), 1804 (2010)

    Google Scholar 

  6. Wang, X.J., Li, X.Y., Wu, Q.H., Yin, X.H.: Neural network based adaptive dynamic surface control of nonaffine nonlinear systems with time delay and input hysteresis nonlinearities. Neurocomputing 333, 53 (2019)

    Google Scholar 

  7. Guo, J.H., Luo, Y.G., Li, K.Q., Guo, L.: Adaptive dynamic surface longitudinal tracking control of autonomous vehicles. IET Intell. Trans. Syst. 13(8), 1272 (2019)

    Google Scholar 

  8. Liu, Z.C., Dong, X.M., Xue, J.P., Li, H.B., Chen, Y.: Adaptive neural control for a class of pure-feedback nonlinear systems via dynamic surface technique. IEEE Trans. Neural Netw. Learn. Syst. 27(9), 1969 (2016)

    MathSciNet  Google Scholar 

  9. Wang, F., Chen, B., Liu, X.P., Lin, C.: Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Trans. Fuzzy Syst. 26(3), 1207 (2018)

    Google Scholar 

  10. Wang, T., Zhang, Y.F., Qiu, J.B., Gao, H.J.: Adaptive fuzzy backstepping control for a class of nonlinear systems with sampled and delayed measurements. IEEE Trans. Fuzzy Syst. 23(2), 302 (2015)

    Google Scholar 

  11. Zeghlache, S.D., AliandBenyettou, L.B., Tarakand Mekki, H.B.: Fault tolerant control for modified quadrotor via adaptive type-2 fuzzy backstepping subject to actuator faults. ISA Trans. (2019). https://doi.org/10.1016/j.isatra.2019.04.034

    Article  Google Scholar 

  12. Sun, J.L., Liu, C.S.: Distributed fuzzy adaptive backstepping optimal control for nonlinear multimissile guidance systems with input saturation. IEEE Trans. Fuzzy Syst. 27(3), 447 (2019)

    Google Scholar 

  13. Chang, C.W., Hsu, C.F., Lee, T.T.: Backstepping-based finite-time adaptive fuzzy control of unknown nonlinear systems. Int. J. Fuzzy Syst. 20(8), 2545 (2018)

    MathSciNet  Google Scholar 

  14. Wu, R.R., Fan, D., Iu, H.H.C., Fernando, T.: Adaptive fuzzy dynamic surface control for uncertain discrete-time non-linear pure-feedback MIMO systems with network-induced time-delay based on state observer. Int. J. Control 92(7), 1707 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Niu, B., Li, H., Zhang, Z.Q., Li, J.Q., Hayat, T., Alsaadi, F.E.: Adaptive neural-network-based dynamic surface control for stochastic interconnected nonlinear nonstrict-feedback systems with dead zone. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1386 (2019)

    Google Scholar 

  16. Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Li, Y.M., Tong, S.C., Li, T.S.: Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems. IEEE Trans. Cybern. 45(1), 138 (2015)

    Google Scholar 

  18. Dong, W.J., Farrell, J.A., Polycarpou, M.M., Djapic, V., Sharma, M.: Command filtered adaptive backstepping. IEEE Trans. Control Syst. Technol. 20(3), 566 (2012)

    Google Scholar 

  19. Zhao, L., Yu, J.P., Lin, C., Ma, Y.M.: Adaptive neural consensus tracking for nonlinear multiagent systems using finite-time command filtered backstepping. IEEE Trans. Syst. Man Cybern. Syst. 48(11), 2003 (2018)

    Google Scholar 

  20. Gao, Z.Y., Guo, G.: Command-filtered fixed-time trajectory tracking control of surface vehicles based on a disturbance observer. Int. J. Robust Nonlinear Control 29(13), 4348 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Wang, X.J., Wu, Q.H., Yin, X.H.: Command filter based adaptive control of asymmetric output-constrained switched stochastic nonlinear systems. ISA Trans. 91, 114 (2019)

    Google Scholar 

  22. Zhao, L., Yu, J.P., Lin, C.: Command filter based adaptive fuzzy bipartite output consensus tracking of nonlinear coopetition multi-agent systems with input saturation. ISA Trans. 80, 187 (2018)

    Google Scholar 

  23. Ling, S., Wang, H., Liu, P.X.: Adaptive fuzzy tracking control of flexible-joint robots based on command filtering. IEEE Trans. Ind. Electron. (2019). https://doi.org/10.1109/TIE.2019.2920599. (Early Access)

    Article  Google Scholar 

  24. Wang, Y.B., Bai, P., Liang, X.L., Zhang, J.Q.: Adaptive output feedback control for a class of non-affine nonlinear systems. Int. J. Control (2019). https://doi.org/10.1080/00207179.2019.1630758

    Article  Google Scholar 

  25. Liu, Z., Dong, X., Xie, W., Chen, Y., Li, H.: Adaptive fuzzy control for pure-feedback nonlinear systems with nonaffine functions being semibounded and indifferentiable. IEEE Trans. Fuzzy Syst. 26(2), 395 (2018)

    Google Scholar 

  26. Park, J.H., Huh, S.H., Kim, S.H., Seo, S.J., Park, G.T.: Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks. IEEE Trans. Neural Netw. Learn. Syst. 16(2), 414 (2005)

    Google Scholar 

  27. Wang, M., Liu, X.P., Shi, P.: Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique. IEEE Trans. Syst. Man Cybern. Syst. 41(6), 1681 (2011)

    Google Scholar 

  28. Sun, C.J., Jing, B., Liu, Z.C.: Adaptive neural control of nonaffine nonlinear systems without differential condition for nonaffine function. Math. Probl. Eng. (2016). https://doi.org/10.1155/2016/4085929

    Article  MathSciNet  MATH  Google Scholar 

  29. Gu, W.W., Yao, J.Y., Yao, Z.K., Zheng, J.Z.: Robust adaptive control of hydraulic system with input saturation and valve dead-zone. IEEE Access 6, 53521 (2018)

    Google Scholar 

  30. Han, Y., Yu, J.P., Zhao, L., Yu, H.S., Lin, C.: Finite-time adaptive fuzzy control for induction motors with input saturation based on command filtering. IET Control Theory Appl. 12(15), 2148 (2018)

    MathSciNet  Google Scholar 

  31. Zhou, Q., Shi, P., Tian, Y., Wang, M.Y.: Approximation-based adaptive tracking control for MIMO nonlinear systems with input saturation. IEEE Trans. Cybern. 45(10), 2119 (2015)

    Google Scholar 

  32. Zhao, N.N., Wu, L.B., Yang, X.Y., Yan, Y., Zhang, R.Y.: Finite-time adaptive fuzzy tracking control for nonlinear systems with disturbances and dead-zone nonlinearities. Appl. Math. Comput. (2019). https://doi.org/10.1016/j.amc.2019.06.008

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, H.Y., Zhao, S.Y., He, W., Lu, R.Q.: Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone. Automatica 100, 99 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Ling, S., Wang, H.Q., Liu, P.X.: Adaptive fuzzy dynamic surface control of flexible-joint robot systems with input saturation. IEEE/CAA J. Autom. Sin. 6(1), 97 (2019)

    MathSciNet  Google Scholar 

  35. Deng, W., Yao, J.Y., Ma, D.W.: Robust adaptive asymptotic tracking control of a class of nonlinear systems with unknown input dead-zone. J. Frankl. Inst. 352(12), 5686 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Shahvali, M., Pariz, N., Akbariyan, M.: Distributed finite-time control for arbitrary switched nonlinear multi-agent systems: an observer-based approach. Nonlinear Dyn. 94(3), 2127 (2018)

    MATH  Google Scholar 

  37. Smaeilzadeh, S.M., Golestani, M.: Finite-time fault-tolerant adaptive robust control for a class of uncertain non-linear systems with saturation constraints using integral backstepping approach. IET Control Theory Appl. 12(15), 2109 (2018)

    MathSciNet  Google Scholar 

  38. Liu, S.Y., Liu, Y.C., Wang, N.: Nonlinear disturbance observer-based backstepping finite-time sliding mode tracking control of underwater vehicles with system uncertainties and external disturbances. Nonlinear Dyn. 88(1), 465 (2017)

    MATH  Google Scholar 

  39. Wang, Y.J., Song, Y.D.: Fraction dynamic-surface-based neuroadaptive finite-time containment control of multiagent systems in nonaffine pure-feedback form. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 678 (2017)

    MathSciNet  Google Scholar 

  40. Wu, G.Q., Song, S.M., Sun, J.G.: Finite-time dynamic surface antisaturation control for spacecraft terminal approach considering safety. J. Spacecr. Rockets 55(6), 1430 (2018)

    Google Scholar 

  41. Li, Y.X.: Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems. Automatica 106, 117 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Gao, F.Z., Wu, Y.Q., Liu, Y.H.: Finite-time stabilization for a class of switched stochastic nonlinear systems with dead-zone input nonlinearities. Int. J. Robust Nonlinear Control 28(9), 3239 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, J., Xia, J.W., Sun, W., Wang, Z., Shen, H.: Command filter-based finite-time adaptive fuzzy control for nonlinear systems with uncertain disturbance. J. Frankl. Inst. (2019). https://doi.org/10.1016/j.jfranklin.2019.05.042

    Article  MathSciNet  MATH  Google Scholar 

  44. Bao, J.L., Wang, H.Q., Liu, X.P., Cheng, C.: Fuzzy finite-time tracking control for a class of nonaffine nonlinear systems with unknown dead zones. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2871560

    Article  Google Scholar 

  45. Li, Y.M., Li, K.W., Tong, S.C.: Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems. IEEE Trans. Fuzzy Syst. 27(1), 96 (2019)

    MathSciNet  Google Scholar 

  46. Ni, J.K., Liu, L.G., He, W., Liu, C.X.: Adaptive dynamic surface neural network control for nonstrict-feedback uncertain nonlinear systems with constraints. Nonlinear Dyn. 94(1), 165 (2018)

    MATH  Google Scholar 

  47. Yu, J.P., Zhao, L., Yu, H.S., Lin, C., Dong, W.J.: Fuzzy finite-time command filtered control of nonlinear systems with input saturation. IEEE Trans. Cybern. 48(8), 2378 (2018)

    Google Scholar 

  48. Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379 (1998)

    MathSciNet  MATH  Google Scholar 

  49. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(10), 924 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Yu, J.P., Shi, P., Zhao, L.: Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica 92, 173 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Yu, J.P., Shi, P., Dong, W.J., Yu, H.S.: Observer and command-filter-based adaptive fuzzy output feedback control of uncertain nonlinear systems. IEEE Trans. Ind. Electron. 62(9), 5962 (2015)

    Google Scholar 

  52. Farrell, J.A., Polycarpou, M., Sharma, M., Dong, W.J.: Command filtered backstepping. IEEE Trans. Autom. Control 54(6), 1391 (2009)

    MathSciNet  MATH  Google Scholar 

  53. Yang, X.T., Yu, J.P., Wang, Q.G., Zhao, L., Yu, H.S., Lin, C.: Adaptive fuzzy finite-time command filtered tracking control for permanent magnet synchronous motors. Neurocomputing 337, 110 (2019)

    Google Scholar 

  54. Sui, S., Tong, S.C., Chen, C.L.: Finite-time filter decentralized control for nonstrict-feedback nonlinear large-scale systems. IEEE Trans. Fuzzy Syst. 26(6), 3289 (2018)

    Google Scholar 

  55. Shi, X.C., Lim, C.C., Shi, P., Xu, S.Y.: Adaptive neural dynamic surface control for nonstrict-feedback systems with output dead zone. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5200 (2018)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (Grant Numbers 61622308, 61933010, 61833016, 61873295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with the present manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The derivative of \({{\alpha }_{1,1}}\) is described as

$$\begin{aligned} {{{\dot{\alpha }}}_{1,1}}=\frac{\partial {{\alpha }_{1,1}}}{\partial {{x}_{1}}}{{g}_{1}}\left( {{{{\bar{x}}}}_{1}},{{x}_{2}} \right) +\frac{\partial {{\alpha }_{1,1}}}{\partial {{y}_\mathrm{r}}}{{{\dot{y}}}_\mathrm{r}}+\frac{\partial {{\alpha }_{1,1}}}{\partial {\hat{\vartheta }}}\dot{{\hat{\vartheta }}}. \end{aligned}$$
(72)

On the one hand, it can be inferred from Assumption 2 that \({{g}_{1}}\left( {{{{\bar{x}}}}_{1}},{{x}_{2}} \right) \), \({{y}_\mathrm{r}}\) and \({{{\dot{y}}}_\mathrm{r}}\) are bounded functions. On the other hand, \(\dot{{\hat{\vartheta }}}\) is a bounded function because \({\hat{\vartheta }}\) is used to estimate weight constant \(\vartheta \). Therefore, \({{{\dot{\alpha }}}_{1,1}}\) is a bounded function.

Taking the derivative of \({{\alpha }_{1,2}}\) yields

$$\begin{aligned} \begin{aligned} {{{{\dot{\alpha }}}}_{1,2}}&=-{{\mu }_{1}}y_\mathrm{r}^{\left( 2 \right) }\tanh \left( \frac{{{v}_{1}}{{{{\dot{y}}}}_\mathrm{r}}}{{{r}_{1}}} \right) -{\hat{\gamma }}{{\left( \tanh \left( \frac{{{v}_{1}}}{{{r}_{1}}} \right) \right) }^{\left( 1 \right) }} \\&\quad -\dot{{\hat{\gamma }}}\tanh \left( \frac{{{v}_{1}}}{{{r}_{1}}} \right) -{{\mu }_{1}}{{\dot{y}}_\mathrm{r}}{{\left( \tanh \left( \frac{{{v}_{1}}{{{{\dot{y}}}}_\mathrm{r}}}{{{r}_{1}}} \right) \right) }^{\left( 1 \right) }}. \\ \end{aligned} \end{aligned}$$
(73)

Because the hyperbolic tangent function and its first derivative are bounded functions, and Assumption 2 implies that \(y_\mathrm{r}^{\left( 2 \right) }\) are bounded function. Therefore, \({{{\dot{\alpha }}}_{1,2}}\) is a bounded function. In summary, \({{{\dot{\alpha }}}_{1}}\) is a bounded function; therefore, for \({{\alpha }_{1}}\), there exists Lipschitz constant \({{L}_{1}}\). Repeating the same analysis process, we can prove that for \({{\alpha }_{K}}\), \(k=2,3,\ldots ,n-1\), there exists Lipschitz constant \({{L}_{K}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wang, Q. Finite-time adaptive fuzzy command filtered control for nonlinear systems with indifferentiable non-affine functions. Nonlinear Dyn 100, 493–507 (2020). https://doi.org/10.1007/s11071-020-05536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05536-3

Keywords

Navigation