Skip to main content
Log in

Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Memristor synapse can be used to characterize the electromagnetic induction effect between two neurons that induces an action current by their membrane potential difference. This paper proposes a memristor synapse-coupled neuron network with no equilibrium, which is achieved using a memristor synapse to connect the membrane potentials of two identical three-dimensional memristive Hindmarsh–Rose neurons. Exponential synchronization is proved theoretically, and synchronous activities are discussed numerically. The theoretical and numerical results illustrate that the synchronicities of memristor synapse-coupled neuron network are related to the memristor coupling coefficient and especially related to the initial states of memristor synapse and coupling neurons. Furthermore, by constructing a ring network of memristor synapse-coupled neuron network, several types of collective behaviors including incoherent, coherent, imperfect synchronization, and chimera states are disclosed numerically, which indicate that the chimera states arisen in the ring network are dependent on the memristor coupling coefficient and sub-network coupling strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    MathSciNet  Google Scholar 

  2. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952)

    Google Scholar 

  3. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Google Scholar 

  4. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296, 162–164 (1982)

    Google Scholar 

  5. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10(6), 1171–1266 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. B 221(1222), 87–102 (1984)

    Google Scholar 

  7. Bennett, D.J., Li, Y.R., Harvey, P.J., Gorassini, M.: Evidence for plateau potentials in tail motoneurons of awake chronic spinal rats with spasticity. J. Neurophysiol. 86(4), 1972–1982 (2001)

    Google Scholar 

  8. Gu, H.G.: Biological experimental observations of an unnoticed chaos as simulated by the Hindmarsh–Rose model. PLoS ONE 8(12), e81759 (2013)

    Google Scholar 

  9. Gonzàlez-Miranda, J.M.: Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int. J. Bifurc. Chaos 17(9), 3071–3083 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Gu, H.G., Pan, B.B., Chen, G.R., Duan, L.X.: Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78(1), 391–407 (2014)

    MathSciNet  Google Scholar 

  11. Innocenti, G., Genesio, R.: On the dynamics of chaotic spiking-bursting transition in the Hindmarsh–Rose neuron. Chaos 19(2), 023124 (2009)

    MathSciNet  Google Scholar 

  12. Ngouonkadi, E.B.M., Fotsin, H.B., Fotso, P.L., Tamba, V.K., Cerdeira, H.A.: Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator. Chaos Solit. Fractals 85, 151–163 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Bao, B.C., Hu, A.H., Xu, Q., Bao, H., Wu, H.G., Chen, M.: AC-induced coexisting asymmetric bursters in the improved Hindmarsh–Rose model. Nonlinear Dyn. 92(4), 1695–1706 (2018)

    Google Scholar 

  14. Chua, L.: If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 104001 (2014)

    Google Scholar 

  15. Rajamani, V., Kim, H., Chua, L.: Morris-Lecar model of third-order barnacle muscle fiber is made of volatile memristors. Sci. China Inf. Sci. 61(6), 060426 (2018)

    MathSciNet  Google Scholar 

  16. Hong, Q.H., Zhao, L., Wang, X.P.: Novel circuit designs of memristor synapse and neuron. Neurocomputing 330, 11–16 (2019)

    Google Scholar 

  17. Wang, Z.R., Joshi, S., Savel’Ev, S.E., Jiang, H., Midya, R., Lin, P., et al.: Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017)

    Google Scholar 

  18. Yan, B.N., Chen, Y.R., Li, H.: Challenges of memristor based neuromorphic computing system. Sci. China Inf. Sci. 61(6), 060425 (2018)

    Google Scholar 

  19. Zhang, Y., Wang, X.P., Friedman, E.G.: Memristors-based circuit design for multilayer neural networks. IEEE Trans. Circuits Syst. I Reg. Pap. 65(2), 677–686 (2018)

    Google Scholar 

  20. Bao, B.C., Hu, A., Bao, H., Xu, Q., Chen, M., Wu, H.G.: Three-dimensional memristive Hindmarsh–Rose neuron model with hidden coexisting asymmetric behaviors. Complexity 2018, 3872573 (2018)

    Google Scholar 

  21. Bao, H., Hu, A.H., Liu, W.B., Bao, B.C.: Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans. Neural Netw. Learn. Syst. 31(2), 502–511 (2020)

    Google Scholar 

  22. Wang, Y., Ma, J., Xu, Y., Wu, F.Q., Zhou, P.: The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurc. Chaos 27(2), 1750030 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Parastesh, F., Rajagopal, K., Karthikeyan, A., Alsaedi, A., Hayat, T., Pham, V.-T.: Complex dynamics of a neuron model with discontinuous magnetic induction and exposed to external radiation. Cognit. Neurodyn. 12(6), 607–614 (2018)

    Google Scholar 

  24. Wu, F.Q., Wang, C.N., Jin, W.Y., Ma, J.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A 469, 81–88 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Bao, H., Liu, W.B., Chen, M.: Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh–Nagumo circuit. Nonlinear Dyn. 96(3), 1879–1894 (2019)

    Google Scholar 

  26. Ma, J., Lv, M., Zhou, P., Xu, Y., Hayat, T.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Xu, Y., Jia, Y., Ma, J., Alsaedi, A., Ahmad, B.: Synchronization between neurons coupled by memristor. Chaos Soliton Fract. 104, 435–442 (2017)

    Google Scholar 

  28. Xu, F., Zhang, J.Q., Fang, T.T., Huang, S.F., Wang, M.S.: Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn. 92(3), 1395–1402 (2018)

    Google Scholar 

  29. Bao, H., Liu, W.B., Hu, A.H.: Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction. Nonlinear Dyn. 95(1), 43–56 (2019)

    Google Scholar 

  30. Chen, C.J., Chen, J.Q., Bao, H., Chen, M., Bao, B.C.: Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 95(4), 3385–3399 (2019)

    Google Scholar 

  31. Usha, K., Subha, P.: Energy feedback and synchronous dynamics of Hindmarsh–Rose neuron model with memristor. Chin. Phys. B 28(2), 02050 (2019)

    Google Scholar 

  32. Parastesh, F., Rajagopal, K., Alsaadi, F.E., Hayat, T., Pham, V.-T., Hussain, I.: Birth and death of spiral waves in a network of Hindmarsh–Rose neurons with exponential magnetic flux and excitable media. Appl. Math. Comput. 354, 377–384 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Mostaghimi, S., Nazarimehr, F., Jafari, S., Ma, J.: Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow. Appl. Math. Comput. 348, 42–56 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Ge, M.Y., Jia, Y., Kirunda, J.B., Xu, Y., Shen, J., Lu, L.L., Liu, Y., Pei, Q.M., Zhan, X., Yang, L.J.: Propagation of firing rate by synchronization in a feed-forward multilayer Hindmarsh–Rose neural network. Neurocomputing 320, 60–68 (2018)

    Google Scholar 

  35. Bartsch, R., Kantelhardt, J.W., Penzel, T., Havlin, S.: Experimental evidence for phase synchronization transitions in the human cardiorespiratory system. Phys. Rev. Lett. 98, 54102 (2007)

    Google Scholar 

  36. Xu, Y., Jia, Y., Wang, H.W., Liu, Y., Wang, P., Zhao, Y.J.: Spiking activities in chain neural network driven by channel noise with field coupling. Nonlinear Dyn. 95(4), 3237–3247 (2019)

    Google Scholar 

  37. Parastesh, F., Jafari, S., Azarnoush, H., Hatef, B., Bountis, A.: Imperfect chimeras in a ring of four-dimensional simplified Lorenz systems. Chaos Solit. Fractals 110, 203–208 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Rakshit, S., Bera, B.K., Perc, M., Ghosh, D.: Basin stability for chimera states. Sci. Rep. 7(1), 2412 (2017)

    Google Scholar 

  39. Gopal, R., Chandrasekar, V.K., Venkatesan, A., Lakshmanan, M.: Observation and characterization of chimera states in coupled dynamical systems with nonlocal coupling. Phys. Rev. E 89(5), 052914 (2014)

    Google Scholar 

  40. Parastesh, F., Jafari, S., Azarnoush, H., Hatef, B., Namazi, H., Dudkowski, D.: Chimera in a network of memristor-based Hopfield neural network. Eur. Phys. J. Spec. Top. 228(10), 2023–2033 (2019)

    Google Scholar 

  41. Dudkowski, D., Czołczyński, K., Kapitaniak, T.: Traveling chimera states for coupled pendula. Nonlinear Dyn. 95(3), 1859–1866 (2019)

    MATH  Google Scholar 

  42. Fang, T.T., Zhang, J.Q., Huang, S.F., Xu, F., Wang, M.S., Yang, H.: Synchronous behavior among different regions of the neural system induced by electromagnetic radiation. Nonlinear Dyn. 98(2), 1267–1274 (2019)

    Google Scholar 

  43. Liu, Y., Ren, G.D., Zhou, P., Hayat, T., Ma, J.: Synchronization in networks of initially independent dynamical systems. Physica A 520, 370–380 (2019)

    MathSciNet  Google Scholar 

  44. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  45. Buscarino, A., Frasca, M., Branciforte, M., Fortuna, L., Sprott, J.C.: Synchronization of two Rössler systems with switching coupling. Nonlinear Dyn. 88(1), 673–683 (2017)

    Google Scholar 

  46. Parastesh, F., Azarnoush, H., Jafari, S., Hatef, B., Perc, M., Repnik, R.: Synchronizability of two neurons with switching in the coupling. Appl. Math. Comput. 350, 217–223 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Bao, B.C., Yang, Q.F., Zhu, D., Zhang, Y.Z., Xu, Q., Chen, M.: Initial-induced coexisting and synchronous firing activities in memristor synapse-coupled Morris–Lecar bi-neuron network. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-05395-7

    Article  Google Scholar 

  48. Majhi, S., Perc, M., Ghosh, D.: Chimera states in uncoupled neurons induced by a multilayer structure. Sci. Rep. 6, 39033 (2016)

    Google Scholar 

  49. Ma, J., Zhang, G., Hayat, T., Ren, G.D.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95(2), 1585–1598 (2019)

    Google Scholar 

  50. Lu, L.L., Jia, Y., Kirunda, J.B., Xu, Y., Ge, M.Y., Pei, Q.M., Yang, L.J.: Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn. 95(2), 1673–1686 (2019)

    Google Scholar 

  51. Ge, M.Y., Jia, Y., Xu, Y., Lu, L.L., Wang, H.W., Zhao, Y.J.: Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network. Appl. Math. Comput. 352, 136–145 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Key Research and Development Program of China under 2018YFB2003304 and the National Natural Science Foundations of China under 51777016 and 61801054, the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China under KYCX19_0172, and the Doctoral Students’ Short Term Study Abroad Fund of Nanjing University of Aeronautics and Astronautics, China under 190601DF02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. These authors contribute equally to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, H., Zhang, Y., Liu, W. et al. Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn 100, 937–950 (2020). https://doi.org/10.1007/s11071-020-05529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05529-2

Keywords

Navigation