Abstract
Memristor synapse can be used to characterize the electromagnetic induction effect between two neurons that induces an action current by their membrane potential difference. This paper proposes a memristor synapse-coupled neuron network with no equilibrium, which is achieved using a memristor synapse to connect the membrane potentials of two identical three-dimensional memristive Hindmarsh–Rose neurons. Exponential synchronization is proved theoretically, and synchronous activities are discussed numerically. The theoretical and numerical results illustrate that the synchronicities of memristor synapse-coupled neuron network are related to the memristor coupling coefficient and especially related to the initial states of memristor synapse and coupling neurons. Furthermore, by constructing a ring network of memristor synapse-coupled neuron network, several types of collective behaviors including incoherent, coherent, imperfect synchronization, and chimera states are disclosed numerically, which indicate that the chimera states arisen in the ring network are dependent on the memristor coupling coefficient and sub-network coupling strength.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)
Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952)
Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)
Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296, 162–164 (1982)
Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10(6), 1171–1266 (2000)
Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. B 221(1222), 87–102 (1984)
Bennett, D.J., Li, Y.R., Harvey, P.J., Gorassini, M.: Evidence for plateau potentials in tail motoneurons of awake chronic spinal rats with spasticity. J. Neurophysiol. 86(4), 1972–1982 (2001)
Gu, H.G.: Biological experimental observations of an unnoticed chaos as simulated by the Hindmarsh–Rose model. PLoS ONE 8(12), e81759 (2013)
Gonzàlez-Miranda, J.M.: Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int. J. Bifurc. Chaos 17(9), 3071–3083 (2007)
Gu, H.G., Pan, B.B., Chen, G.R., Duan, L.X.: Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78(1), 391–407 (2014)
Innocenti, G., Genesio, R.: On the dynamics of chaotic spiking-bursting transition in the Hindmarsh–Rose neuron. Chaos 19(2), 023124 (2009)
Ngouonkadi, E.B.M., Fotsin, H.B., Fotso, P.L., Tamba, V.K., Cerdeira, H.A.: Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator. Chaos Solit. Fractals 85, 151–163 (2016)
Bao, B.C., Hu, A.H., Xu, Q., Bao, H., Wu, H.G., Chen, M.: AC-induced coexisting asymmetric bursters in the improved Hindmarsh–Rose model. Nonlinear Dyn. 92(4), 1695–1706 (2018)
Chua, L.: If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 104001 (2014)
Rajamani, V., Kim, H., Chua, L.: Morris-Lecar model of third-order barnacle muscle fiber is made of volatile memristors. Sci. China Inf. Sci. 61(6), 060426 (2018)
Hong, Q.H., Zhao, L., Wang, X.P.: Novel circuit designs of memristor synapse and neuron. Neurocomputing 330, 11–16 (2019)
Wang, Z.R., Joshi, S., Savel’Ev, S.E., Jiang, H., Midya, R., Lin, P., et al.: Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017)
Yan, B.N., Chen, Y.R., Li, H.: Challenges of memristor based neuromorphic computing system. Sci. China Inf. Sci. 61(6), 060425 (2018)
Zhang, Y., Wang, X.P., Friedman, E.G.: Memristors-based circuit design for multilayer neural networks. IEEE Trans. Circuits Syst. I Reg. Pap. 65(2), 677–686 (2018)
Bao, B.C., Hu, A., Bao, H., Xu, Q., Chen, M., Wu, H.G.: Three-dimensional memristive Hindmarsh–Rose neuron model with hidden coexisting asymmetric behaviors. Complexity 2018, 3872573 (2018)
Bao, H., Hu, A.H., Liu, W.B., Bao, B.C.: Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans. Neural Netw. Learn. Syst. 31(2), 502–511 (2020)
Wang, Y., Ma, J., Xu, Y., Wu, F.Q., Zhou, P.: The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurc. Chaos 27(2), 1750030 (2017)
Parastesh, F., Rajagopal, K., Karthikeyan, A., Alsaedi, A., Hayat, T., Pham, V.-T.: Complex dynamics of a neuron model with discontinuous magnetic induction and exposed to external radiation. Cognit. Neurodyn. 12(6), 607–614 (2018)
Wu, F.Q., Wang, C.N., Jin, W.Y., Ma, J.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A 469, 81–88 (2017)
Bao, H., Liu, W.B., Chen, M.: Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh–Nagumo circuit. Nonlinear Dyn. 96(3), 1879–1894 (2019)
Ma, J., Lv, M., Zhou, P., Xu, Y., Hayat, T.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)
Xu, Y., Jia, Y., Ma, J., Alsaedi, A., Ahmad, B.: Synchronization between neurons coupled by memristor. Chaos Soliton Fract. 104, 435–442 (2017)
Xu, F., Zhang, J.Q., Fang, T.T., Huang, S.F., Wang, M.S.: Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn. 92(3), 1395–1402 (2018)
Bao, H., Liu, W.B., Hu, A.H.: Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction. Nonlinear Dyn. 95(1), 43–56 (2019)
Chen, C.J., Chen, J.Q., Bao, H., Chen, M., Bao, B.C.: Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 95(4), 3385–3399 (2019)
Usha, K., Subha, P.: Energy feedback and synchronous dynamics of Hindmarsh–Rose neuron model with memristor. Chin. Phys. B 28(2), 02050 (2019)
Parastesh, F., Rajagopal, K., Alsaadi, F.E., Hayat, T., Pham, V.-T., Hussain, I.: Birth and death of spiral waves in a network of Hindmarsh–Rose neurons with exponential magnetic flux and excitable media. Appl. Math. Comput. 354, 377–384 (2019)
Mostaghimi, S., Nazarimehr, F., Jafari, S., Ma, J.: Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow. Appl. Math. Comput. 348, 42–56 (2019)
Ge, M.Y., Jia, Y., Kirunda, J.B., Xu, Y., Shen, J., Lu, L.L., Liu, Y., Pei, Q.M., Zhan, X., Yang, L.J.: Propagation of firing rate by synchronization in a feed-forward multilayer Hindmarsh–Rose neural network. Neurocomputing 320, 60–68 (2018)
Bartsch, R., Kantelhardt, J.W., Penzel, T., Havlin, S.: Experimental evidence for phase synchronization transitions in the human cardiorespiratory system. Phys. Rev. Lett. 98, 54102 (2007)
Xu, Y., Jia, Y., Wang, H.W., Liu, Y., Wang, P., Zhao, Y.J.: Spiking activities in chain neural network driven by channel noise with field coupling. Nonlinear Dyn. 95(4), 3237–3247 (2019)
Parastesh, F., Jafari, S., Azarnoush, H., Hatef, B., Bountis, A.: Imperfect chimeras in a ring of four-dimensional simplified Lorenz systems. Chaos Solit. Fractals 110, 203–208 (2018)
Rakshit, S., Bera, B.K., Perc, M., Ghosh, D.: Basin stability for chimera states. Sci. Rep. 7(1), 2412 (2017)
Gopal, R., Chandrasekar, V.K., Venkatesan, A., Lakshmanan, M.: Observation and characterization of chimera states in coupled dynamical systems with nonlocal coupling. Phys. Rev. E 89(5), 052914 (2014)
Parastesh, F., Jafari, S., Azarnoush, H., Hatef, B., Namazi, H., Dudkowski, D.: Chimera in a network of memristor-based Hopfield neural network. Eur. Phys. J. Spec. Top. 228(10), 2023–2033 (2019)
Dudkowski, D., Czołczyński, K., Kapitaniak, T.: Traveling chimera states for coupled pendula. Nonlinear Dyn. 95(3), 1859–1866 (2019)
Fang, T.T., Zhang, J.Q., Huang, S.F., Xu, F., Wang, M.S., Yang, H.: Synchronous behavior among different regions of the neural system induced by electromagnetic radiation. Nonlinear Dyn. 98(2), 1267–1274 (2019)
Liu, Y., Ren, G.D., Zhou, P., Hayat, T., Ma, J.: Synchronization in networks of initially independent dynamical systems. Physica A 520, 370–380 (2019)
Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)
Buscarino, A., Frasca, M., Branciforte, M., Fortuna, L., Sprott, J.C.: Synchronization of two Rössler systems with switching coupling. Nonlinear Dyn. 88(1), 673–683 (2017)
Parastesh, F., Azarnoush, H., Jafari, S., Hatef, B., Perc, M., Repnik, R.: Synchronizability of two neurons with switching in the coupling. Appl. Math. Comput. 350, 217–223 (2019)
Bao, B.C., Yang, Q.F., Zhu, D., Zhang, Y.Z., Xu, Q., Chen, M.: Initial-induced coexisting and synchronous firing activities in memristor synapse-coupled Morris–Lecar bi-neuron network. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-05395-7
Majhi, S., Perc, M., Ghosh, D.: Chimera states in uncoupled neurons induced by a multilayer structure. Sci. Rep. 6, 39033 (2016)
Ma, J., Zhang, G., Hayat, T., Ren, G.D.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95(2), 1585–1598 (2019)
Lu, L.L., Jia, Y., Kirunda, J.B., Xu, Y., Ge, M.Y., Pei, Q.M., Yang, L.J.: Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn. 95(2), 1673–1686 (2019)
Ge, M.Y., Jia, Y., Xu, Y., Lu, L.L., Wang, H.W., Zhao, Y.J.: Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network. Appl. Math. Comput. 352, 136–145 (2019)
Acknowledgements
This work was supported by the grants from the National Key Research and Development Program of China under 2018YFB2003304 and the National Natural Science Foundations of China under 51777016 and 61801054, the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China under KYCX19_0172, and the Doctoral Students’ Short Term Study Abroad Fund of Nanjing University of Aeronautics and Astronautics, China under 190601DF02.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest. These authors contribute equally to this work.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bao, H., Zhang, Y., Liu, W. et al. Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn 100, 937–950 (2020). https://doi.org/10.1007/s11071-020-05529-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-020-05529-2