Skip to main content
Log in

The mechanism of switching combination synchronization for three distinct nonautonomous systems under sinusoidal constraints

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the mechanism of switching combination synchronization the controlled Duffing oscillator with Van der Pol system and Pendulum system is studied. Based on the theory of discontinuous dynamical systems, the analytical conditions for chaos synchronization of three different systems are obtained under sinusoidal constraints. With these conditions, the control parameter maps and the synchronization invariant sets are derived, respectively. Numerical illustrations for partial and full combination synchronization among three systems are carried out. The circuits of switching synchronization are used for the validation of the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 1196–1199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abd, M.H., Tahir, F.R., Al-Suhail, G.A.: An adaptive observer synchronization using chaotic time-delay system for secure communication. Nonlinear Dyn. 90(4), 2583–2598 (2017)

    Article  MathSciNet  Google Scholar 

  3. Pano-Azucena, A.D., Jose, R.M., Tlelo-Cuautle, E.: Arduino-based chaotic secure communication system using multi-directional multi-scroll chaotic oscillators. Nonlinear Dyn. 87(4), 2203–2217 (2017)

    Article  Google Scholar 

  4. Wang, L.M., Dong, T.D., Ge, M.F.: Finite-time synchronization of memristor chaotic systems and its application in image encryption. Appl. Math. Comput. 347, 293–305 (2019)

    MATH  Google Scholar 

  5. Bhat, M.A., Shikha, N.A.: Complete synchronisation of non-identical fractional order hyperchaotic systems using active control. Int. J. Autom. Control 13(2), 140–157 (2019)

    Article  Google Scholar 

  6. Contreras, M., Anteneodo, C.: Complete synchronization of chaotic maps under advection. Phys. Rev. E. 98(5), 052222 (2018)

    Article  MathSciNet  Google Scholar 

  7. Wu, Z., Zhang, X., Zhong, X.: Generalized chaos synchronization circuit simulation and asymmetric image encryption. IEEE Access 7, 37989–38008 (2019)

    Article  Google Scholar 

  8. Giresse, T.A., Crépin, K.T.: Chaos generalized synchronization of coupled Mathieu–Van der Pol and coupled Duffing–Van der Pol systems using fractional order-derivative. Chaos Solitons Fractals 98, 88–100 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gasri, A., Ouannas, A., Ojo, K.S., Pham, V.T.: Coexistence of generalized synchronization and inverse generalized synchronization between chaotic and hyperchaotic systems. Nonlinear Anal. Model. Control 23(4), 583–598 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, R.: Projective synchronization of a class of chaotic systems by dynamic feedback control method. Nonlinear Dyn. 90(4), 53–64 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, Q., Xiao, J., Zhang, X.Q.: Dual projective synchronization between integer-order and fractional-order chaotic systems. Optik Int. J. Light Electron Opt. 141, 90–98 (2017)

    Article  Google Scholar 

  12. Fatef, N.A.A., Said, M.R.M.: Generalized projective series synchronization between chaotic systems and its application. J. Fundam. Appl. Sci. 9(3s), 294–307 (2017)

    Article  Google Scholar 

  13. Zhang, H., Wang, X., Zhang, J., et al.: Multi-switching combination synchronization of spatiotemporal coupled chaotic systems with complexities. Int. J. Mod. Phys. C 30(9), 1–14 (2019)

    Article  MathSciNet  Google Scholar 

  14. Singh, A.K., Yadav, V.K., Das, S.: Dual combination synchronization of the fractional order complex chaotic systems. J. Comput. Nonlinear Dyn. 5(1), 756–770 (2017)

    Google Scholar 

  15. Vincent, U.E., Saseyi, A.O., Mcclintock, P.V.E.: Multi-switching combination synchronization of chaotic systems. Nonlinear Dyn. 80(1–2), 845–854 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sun, J.W., Cui, G.Z., Wang, Y.F.: Combination complex synchronization of three chaotic complex systems. Nonlinear Dyn. 79(2), 953–965 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sonia, H.: Multi-switching combination synchronization of discrete-time hyperchaotic systems for encrypted audio communication. IMA J. Math. Control Inf. 36(2), 583–602 (2019)

    Article  MathSciNet  Google Scholar 

  18. Ayub, K., Mridula, B., Aysha, I.: Multiswitching dual combination synchronization of time-delay chaotic systems. Math. Methods Appl. Sci. 41(5), 5679–5690 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Li, B., Zhou, X.B., Wang, Y.: Combination synchronization of three different fractional-order delayed chaotic systems. Complexity 2019, 5184032 (2019). https://doi.org/10.1155/2019/5184032

    Article  MATH  Google Scholar 

  20. Khan, A., Bhat, M.A.: Multi-switching combination–combination synchronization of non-identical fractional-order chaotic systems. Math. Methods Appl. Sci. 40(8), 5654–5667 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ye, Q., Jiang, Z., Chen, T.: Adaptive feedback control for synchronization of chaotic neural systems with parameter mismatches. Complexity 2018, 1–8 (2018)

    MATH  Google Scholar 

  22. Ruzitalab, A., Farahi, M.H., Erjaee, G.H.: Synchronization of multiple chaotic systems using a nonlinear grouping feedback function method. Mechatron. Syst. Control 46(1), 26–31 (2018)

    MathSciNet  Google Scholar 

  23. Kanchanaharuthai, A., Mujjalinvimut, E.: Nonlinear disturbance observer-based backstepping control for a dual excitation and steam-valving system of synchronous generators with external disturbances. Int. J. Innov. Comput. Inf. Control 14(1), 111–126 (2018)

    Google Scholar 

  24. Tirandaz, H., Aminabadi, S.S., Tavakoli, H.: Chaos synchronization and parameter identification of a finance chaotic system with unknown parameters, a linear feedback controller. Alex. Eng. J. 57(3), 1519–1524 (2018)

    Article  Google Scholar 

  25. Singh, P.P., Roy, B.K.: Memristor-based novel complex-valued chaotic system and its projective synchronization using nonlinear active control technique. Eur. Phys. J. Spec. Top. 228(10), 2197–2214 (2019)

    Article  Google Scholar 

  26. Zhang, X.H., Ye, X., Liu, Q., Chen, L.P.: Projective synchronization of a class of uncertain chaotic systems via feedback impulsive control. Int. J. Innov. Comput. Inf. Control 15(6), 2197–2209 (2019)

    Google Scholar 

  27. Mobayen, S.: Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control. ISA Trans. 77, 100–111 (2018)

    Article  Google Scholar 

  28. Luo, A.C.J.: A theory for synchronization of dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 14(5), 1901–1951 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Luo, A.C.J.: A theory for flow switchability in discontinuous dynamical systems. Nonlinear Anal. Hybrid Syst. 2(4), 1030–1061 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Luo, A.C.J.: Regularity and Complexity in Dynamical Systems. Springer, New York (2012)

    Book  MATH  Google Scholar 

  31. Min, F.H., Luo, A.C.J.: Analysis of generalized projective synchronization for a chaotic gyroscope with a periodic gyroscope. Nonlinear Dyn. 69(3), 1203–1223 (2012)

    Article  MathSciNet  Google Scholar 

  32. Min, F.H., Luo, A.C.J.: Complex dynamics of projective synchronization of Chua circuits with different scrolls. Int. J. Bifurc. Chaos 25(5), 1530016 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Foundations of China under Grant Nos. 61971228, 61871230, 21875112 and the Postgraduate Research and Practice Innovation Program of Jiangsu Province of China under Grant No. SJCX19_0199.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhong Min.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, F., Ma, H. The mechanism of switching combination synchronization for three distinct nonautonomous systems under sinusoidal constraints. Nonlinear Dyn 100, 475–492 (2020). https://doi.org/10.1007/s11071-020-05516-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05516-7

Keywords

Navigation