Skip to main content
Log in

Reduction in the \(\mathbf {(4+1)}\)-dimensional Fokas equation and their solutions

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An integrable extension of the Kadomtsev–Petviashvili (KP) and Davey–Stewartson (DS) equations is investigated in this paper. We will refer to this integrable extension as the \((4+1)\)-dimensional Fokas equation. The determinant expressions of soliton, breather, rational, and semi-rational solutions of the \((4+1)\)-dimensional Fokas equation are constructed based on the Hirota’s bilinear method and the KP hierarchy reduction method. The complex dynamics of these new exact solutions are shown in both three-dimensional plots and two-dimensional contour plots. Interestingly, the patterns of obtained high-order lumps are similar to those of rogue waves in the \((1+1)\)-dimensions by choosing different values of the free parameters of the model. Furthermore, three kinds of new semi-rational solutions are presented and the classification of lump fission and fusion processes is also discussed. Additionally, we give a new way to obtain rational and semi-rational solutions of \((3+1)\)-dimensional KP equation by reducing the solutions of the \((4+1)\)-dimensional Fokas equation. All these results show that the \((4+1)\)-dimensional Fokas equation is a meaningful multidimensional extension of the KP and DS equations. The obtained results might be useful in diverse fields such as hydrodynamics, nonlinear optics, and photonics, ion-acoustic waves in plasmas, matter waves in Bose–Einstein condensates, and sound waves in ferromagnetic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Russell, J.S.: Report of the committee on waves. In: Report of the 7th Metting of the British Association for the Advabcement of Science, 417–496. Liverpool (1838)

  2. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and a new type of long stationary waves. Philos. Mag. Ser. 5(39), 422–443 (1895)

    MathSciNet  MATH  Google Scholar 

  3. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    MATH  Google Scholar 

  4. Liu, W.J., Zhang, Y.J., Luan, Z.T., Zhou, Q., Mirzazadeh, M., Ekici, M., Biswas, A.: Dromion-like soliton interactions for nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers. Nonlinear Dyn. 96, 729–736 (2019)

    Google Scholar 

  5. Liu, S.Z., Zhou, Q., Biswas, A., Liu, W.J.: Phase-shift controlling of three solitons in dispersion-decreasing fibers. Nonlinear Dyn. 98, 395–401 (2019)

    MATH  Google Scholar 

  6. Ablowitz, M., Clarkson, P.: Soliton, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  7. Davey, A., Stewartson, K.: On three-dimensional packets of surface waves. Proc. R. Soc. Lond. A 338, 101–110 (1974)

    MathSciNet  MATH  Google Scholar 

  8. Jimbo, M., Miwa, T.: Solitons and infinite-dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19, 943–1001 (1983)

    MathSciNet  MATH  Google Scholar 

  9. Lou, S.Y., Lin, J., Yu, J.: \((3+1)\)-dimensional models with an infinitely dimensional Virasoro type symmetry algebra. Phys. Lett. A 201, 47–52 (1995)

    MathSciNet  MATH  Google Scholar 

  10. Lou, S.Y.: Dromion-like structures in a \((3+1)\)-dimensional KdV-type equation. J. Phys. A Math. Gen. 29, 5989–6001 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Yu, S.J., Toda, K., Sasa, N., Fukuyama, T.: N soliton solutions to the Bogoyavlenskii–Schiff equation and a quest for the soliton solution in \((3+1)\) dimensions. J. Phys. A Math. Gen. 31, 3337–3347 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Geng, X.G.: Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations. J. Phys. A Math. Gen. 36, 2289–2303 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Fokas, A.S.: The D-bar method, inversion of certain integrals and integrability in \(4+2\) and \(3+1\) dimensions. J. Phys. A Math. Theor. 41, 344006 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Fokas, A.S.: Soliton multidimensional equations and integrable evolutions preserving Laplace’s equation. Phys. Lett. A 372, 1277–1279 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Fokas, A.S.: Nonlinear Fourier transforms, integrability and nonlocality in multidimensions. Nonlinearity 20, 2093–2113 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Fokas, A.S.: Nonlinear Fourier transforms and integrability in multidimensions. Contemp. Math. 458, 71–80 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Dimakos, M., Fokas, A.S.: Davey–Stewartson type equations in \(4+2\) and \(3+1\) possessing soliton solutions. J. Math. Phys. 54, 081504 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Fokas, A.S., van der Weele, M.C.: Complexification and integrability in multidimensions. J. Math. Phys. 59, 091413 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Wazwaz, A.M., El-Tantawy, S.A.: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method. Nonlinear Dyn. 88, 3017–3021 (2017)

    MathSciNet  Google Scholar 

  20. Liu, J.G., He, Y.: Abundant lump and lump-kink solutions for the new \((3+1)\)-dimensional generalized Kadomtsev–Petviashvili equation. Nonlinear Dyn. 92, 1103–1108 (2018)

    Google Scholar 

  21. Sergyeyev, A.: Integrable \((3+1)\)-dimensional systems with rational Lax pairs. Nonlinear Dyn. 91, 1677–1680 (2018)

    MATH  Google Scholar 

  22. Xu, G.Q., Wazwaz, A.M.: Characteristics of integrability, bidirectional solitons and localized solutions for a \((3+1)\)-dimensional generalized breaking soliton equation. Nonlinear Dyn. 96, 1989–2000 (2019)

    Google Scholar 

  23. Ding, C.C., Gao, Y.T., Deng, G.F.: Breather and hybrid solutions for a generalized \((3+1)\)-dimensional B-type Kadomtsev–Petviashvili equation for the water waves. Nonlinear Dyn. 97, 2023–2040 (2019)

    MATH  Google Scholar 

  24. Chen, S., Zhou, Y., Baronio, F., Mihalache, D.: Special types of elastic resonant soliton solutions of the Kadomtsev–Petviashvili II equation. Rom. Rep. Phys. 70, 102 (2018)

    Google Scholar 

  25. Kaur, L., Wazwaz, A.M.: Bright–dark lump wave solutions for a new form of the \((3+1)\)-dimensional BKP-Boussinesq equation. Rom. Rep. Phys. 71, 102 (2019)

    Google Scholar 

  26. Malomed, B.A., Mihalache, D.: Nonlinear waves in optical and matter-wave media: a topical survey of recent theoretical and experimental results. Rom. J. Phys. 64, 106 (2019)

    Google Scholar 

  27. Fokas, A.S.: Integrable nonlinear evolution partial differential equations in \(4+2\) and \(3+1\) dimensions. Phys. Rev. Lett. 96, 190201 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Yang, Z.Z., Yan, Z.Y.: Symmetry groups and exact solutions of new \((4+1)\)-dimensional Fokas equation. Commun. Theor. Phys. 51, 876–880 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Lee, J., Sakthivel, R., Wazzan, L.: Exact traveling wave solutions of a high-dimensional evolution equation. Mod. Phys. Lett. B 24, 1011–1021 (2010)

    MATH  Google Scholar 

  30. Wang, X.B., Tian, S.F., Feng, L.L., Zhang, T.T.: On quasi-periodic waves and rogue waves to the \((4+1)\)-dimensional nonlinear Fokas equation. J. Math. Phys. 59, 073505 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Cheng, L., Zhang, Y.: Lump-type solutions for the \((4+1)\)-dimensional Fokas equation via symbolic computations. Mod. Phys. Lett. B 31, 1750224 (2017)

    MathSciNet  Google Scholar 

  32. Tan, W., Dai, Z.D., Xie, J.L., Qiu, D.Q.: Parameter limit method and its application in the \((4+1)\)-dimensional Fokas equation. Comput. Math. Appl. 75, 4214–4220 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Sun, H.Q., Chen, A.H.: Interactional solutions of a lump and a solitary wave for two higher-dimensional equations. Nonlinear Dyn. 94, 1753–1762 (2018)

    Google Scholar 

  34. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  35. Ohta, Y., Wang, D.S., Yang, J.K.: General \(N\)-dark–dark solitons in the coupled nonlinear Schrödinger equations. Stud. Appl. Math. 127, 345–371 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Ohta, Y., Yang, J.K.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A 468, 1716 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Ohta, Y., Yang, J.K.: Dynamics of rogue waves in the Davey–Stewartson II equation. J. Phys. A Math. Theor. 46, 105202 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Ohta, Y., Yang, J.K.: Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86, 036604 (2012)

    Google Scholar 

  39. Rao, J.G., Cheng, Y., He, J.S.: Rational and semirational solutions of the nonlocal Davey–Stewartson equations. Stud. Appl. Math. 139, 568–598 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Rao, J.G., Zhang, Y.S., Fokas, A.S., He, J.S.: Rogue waves of the nonlocal Davey–Stewartson I equation. Nonlinerity 31, 4090–4107 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Qian, C., Rao, J.G., Mihalache, D., He, J.S.: Rational and semi-rational solutions of the y-nonlocal Davey–Stewartson I equation. Comput. Math. Appl. 75, 3317–3330 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Senatorski, A., Infeld, E.: Simulations of two-dimensional Kadomtsev–Petviashvili soliton dynamics in three-dimensional space. Phys. Rev. Lett. 77, 14 (1996)

    Google Scholar 

  43. Infeld, E., Rowlands, G.: Three-dimensional stability of Korteweg–de Vries waves and solitons II. Acta Phys. Polon. A 56, 329–332 (1979)

    MathSciNet  Google Scholar 

  44. Kuznietsov, E.A., Musher, S.L.: Effect of sound wave collapse on the structure of collisionless shock waves in a magnetized plasma. Zh. Eksp. Teor. Phys. 91, 1605 (1986)

    Google Scholar 

Download references

Funding

This work is supported by the NSF of China under Grant Nos. 11671219 and 11871446.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., He, J., Cheng, Y. et al. Reduction in the \(\mathbf {(4+1)}\)-dimensional Fokas equation and their solutions. Nonlinear Dyn 99, 3013–3028 (2020). https://doi.org/10.1007/s11071-020-05485-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05485-x

Keywords

Navigation