Skip to main content
Log in

Super-twisting sliding mode control for aircraft at high angle of attack based on finite-time extended state observer

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a finite-time decoupling control strategy for aircraft with thrust vector at high angle of attack maneuver. Firstly, the nonlinear mathematical model of the aircraft is presented. Taking into account the insufficiency of the aerodynamic control surface, a thrust vector model with double nozzles is added. Subsequently, a three-channel decoupling control scheme based on finite-time extended state observer is employed to realize the high angle of attack maneuver. Strong coupling among different channels, aerodynamic uncertainties and other unmodeled dynamics are regarded as total disturbance and estimated by a finite-time extended state observer. Super-twisting (SWT) sliding mode control is utilized to obtain expected performance and finite-time stability. The daisy chain method is adopted to realize the control allocation. Finally, the numerical simulations are provided to demonstrate the effectiveness and robustness of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu, D., Chen, M., Gong, H.: Robust control of post-stall pitching maneuver based on finite-time observers. ISA Trans. 70(4), 53–63 (2017)

    Article  Google Scholar 

  2. Ozgur, A., Kemal, O.: High-alpha flight maneuverability enhancement of a twin engine fighter-bomber aircraft for air combat superiority using thrust-vectoring control, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 1–26 (2006)

  3. Ericsson, L.: Challenges in high-alpha vehicle dynamics. Prog. Aerosp. Sci. 31(4), 291–334 (1995)

    Article  Google Scholar 

  4. Yang, J., Zhu, J.: A hybrid NDI control method for the high-alpha super-maneuver flight control. In: Proceedings of American Control Conference, pp. 6747–6753 (2016)

  5. Choudhary, S.K.: Optimal feedback control of a twin rotor MIMO system. Int. J. Simul. Model. 37(1), 46–53 (2017)

    Article  Google Scholar 

  6. Zhang, L., Wang, S., Karimi, H.R., Jasra, A.: Robust finite-time control of switched linear systems and application to a class of servomechanism systems. IEEE-ASME Trans. Mechatron. 20(5), 2476–2485 (2015)

    Article  Google Scholar 

  7. Choudhary, S.K.: Optimal feedback control of twin rotor MIMO system with a prescribed degree of stability. Int. J. Intell. Unman. Syst. 20(5), 2476–2485 (2015)

    Google Scholar 

  8. Snell, S., Enns, D., Garrard, J.: Nonlinear inversion flight control for a supermaneuverable aircraft. J. Guid. Control Dyn. 15(4), 976–984 (1992)

    Article  Google Scholar 

  9. Adams, R., Buffington, J., Banda, S.: Design of nonlinear control laws for high-angle-of-attack flight. J. Guid. Control Dyn. 17(4), 737–746 (1994)

    Article  Google Scholar 

  10. Ronald, H., Cheng, P.: Design for robust aircraft flight control. J. Aircr. 17(1), 1–12 (2017)

    Google Scholar 

  11. Sharma, M.: Flight-path angle control via neuro-adaptive backstepping. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 1–8 (2002)

  12. Sonneveldt, L., Chu, Q., Mulder, J.: Nonlinear flight control design using constrained adaptive backstepping. J. Guid. Control Dyn. 30(2), 322–336 (2007)

    Article  Google Scholar 

  13. Farrell, J., Polycarpou, M., Sharma, M.: Adaptive backstepping with magnitude, rate, and bandwidth constraints: Aircraft longitude control. In: Proceedings of American Control Conference, pp. 3898–3904 (2003)

  14. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  15. Gao, Z.: On the centrality of disturbance rejection in automatic control. ISA Trans. 53, 850–857 (2014)

    Article  Google Scholar 

  16. Luo, S., Sun, Q., Sun, M., Tan, P., Wu, W., Sun, H., Chen, Z.: On decoupling trajectory tracking control of unmanned powered parafoil using ADRC-based coupling analysis and dynamic feedforward compensation. Nonlinear Dyn. 92(4), 1619–1635 (2018)

    Article  Google Scholar 

  17. Aboudonia, A., El-Badawy, A., Rashad, R.: Active anti-disturbance control of a quadrotor unmanned aerial vehicle using the command-filtering backstepping approach. Nonlinear Dyn. 90(1), 581–597 (2017)

    Article  Google Scholar 

  18. Zhang, C., Yang, J., Li, S., Yang, N.: A generalized active disturbance rejection control method for nonlinear uncertain systems subject to additive disturbance. Nonlinear Dyn. 83(4), 2361–2372 (2016)

    Article  MathSciNet  Google Scholar 

  19. Yu, Y., Yuan, Y., Yang, H.: Nonlinear sampled-data ESO-based active disturbance rejection control for networked control systems with actuator saturation. Nonlinear Dyn. 95(2), 1415–1434 (2019)

    Article  Google Scholar 

  20. Raj, K., Muthukumar, V., Singh, S.N., Lee, K.W.: Finite-time sliding mode and super-twisting control of fighter aircraft. Aerosp. Sci. Technol. 82(5), 487–498 (2018)

    Article  Google Scholar 

  21. Utkin, V.I., Guldner, J., Shi, J.: Sliding Modes Control in Electromechanical Systems. Taylor and Francis, London (1999)

    Google Scholar 

  22. Emelyanov, S.V., Korovin, S.V., Levantovsky, L.V.: Higher order sliding modes incontrol system. Differ. Equ. 29(11), 1627–1647 (1993)

    Google Scholar 

  23. Defoort, M., Floquet, T., Kokosy, A.: A novel high order sliding mode control scheme. Syst. Control Lett. 58(2), 102–108 (2009)

    Article  Google Scholar 

  24. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)

    Article  MathSciNet  Google Scholar 

  25. Levant, A.: Principles of 2-sliding mode design. Automatica 43(4), 576–586 (2007)

    Article  MathSciNet  Google Scholar 

  26. Moreno, J.A., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Control 57(4), 1035–1040 (2012)

    Article  MathSciNet  Google Scholar 

  27. Nagesh, I., Edwards, C.: A multivariable super-twisting sliding mode approach. Automatica 50(3), 984–988 (2014)

    Article  MathSciNet  Google Scholar 

  28. Defoort, M., Nollet, F., Floquet, T., et al.: A third-order sliding-mode controller for a stepper motor. IEEE Trans. Ind. Electron. 56(9), 3337–3346 (2009)

    Article  Google Scholar 

  29. Mobayen, S., Tchier, F., Ragoub, L.: Design of an adaptive tracker for n-link rigid robotic manipulators based on super-twisting global nonlinear sliding mode control. Int. J. Syst. Sci. 48(9), 1990–2002 (2017)

    Article  MathSciNet  Google Scholar 

  30. Haghighi, D.A., Mobayen, S.: Design of an adaptive super-twisting decoupled terminal sliding mode control scheme for a class of fourth-order systems. ISA Trans. 75, 216–225 (2018)

    Article  Google Scholar 

  31. Nasiri, M., Mobayen, S., Zhu, Q.M.: Super-twisting sliding mode control for gearless PMSG-based wind turbine. Complexity, Early Access 1–15 (2019). https://doi.org/10.1155/2019/6141607

  32. Qin, Y., Rath, J., Hu, C., Sentouh, C., Wang, R.: Adaptive nonlinear active suspension control based on a robust road classifier with a modified super-twisting algorithm. Nonlinear Dyn. 97(4), 2425–2442 (2019)

    Article  Google Scholar 

  33. Levant, A.: High-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9), 924–941 (2003)

    Article  Google Scholar 

  34. Wang, X., Lin, H.: Design and frequency analysis of continuous finite-time-convergent differentiator. Aerosp. Sci. Technol. 18(1), 69–78 (2012)

    Article  Google Scholar 

  35. Davila, J., Fridman, L., Levant, A.: Second-order sliding-mode observer for mechanical systems. IEEE Trans. Autom. Control 50(11), 1785–1789 (2005)

    Article  MathSciNet  Google Scholar 

  36. Lu, K., Xia, Y.: Finite-time attitude control for rigid spacecraft-based on adaptive super-twisting algorithm. IET Control Theory Appl. 8(15), 1465–1477 (2014)

    Article  Google Scholar 

  37. Levant, A., Pridor, A., Gitizadeh, R., Yaesh, I., Benasher, J.: Aircraft pitch control via second-order sliding technique. J. Guid. Control Dyn. 23(4), 586–594 (2000)

    Article  Google Scholar 

  38. Raj, K., Muthukumar, V., Singh, S.: Robust higher-order sliding mode control systems for roll-coupled maneuvers of aircraft using output feedback. In: Proceedings of 2018 Atmospheric Flight Mechanics Conference, pp. 1–22 (2018)

  39. Zong, Q., Dong, Q., Wang, F., Tian, B.: Super twisting sliding mode control for a flexible air-breathing hypersonic vehicle based on disturbance observer. Sci. China Inf. Sci. 58(7), 1–15 (2015)

    Article  MathSciNet  Google Scholar 

  40. Jiang, T., Lin, D., Song, T.: Finite-time control for small-scale unmanned helicopter with disturbances. Nonlinear Dyn. 96(3), 1747–1763 (2019)

    Article  Google Scholar 

  41. Stevens, B., Lewis, F.: Aircraft Control and Simulation. Wiley, Hoboken (2007)

    Google Scholar 

  42. Basin, M., Yu, P., Shtessel, Y.: Finite- and fixed-time differentiators utilising HOSM techniques. IET Control Theory Appl. 11(8), 1144–1152 (2016)

    Article  MathSciNet  Google Scholar 

  43. Bhat, S., Bernstein, D.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  Google Scholar 

  44. Liu, J., Sun, M., Chen, Z., Sun, Q.: Practical coupling rejection control for Herbst maneuver with thrust vector. AIAA J. Aircr. 56(4), 1726–1734 (2019)

    Article  Google Scholar 

  45. Mukherjee, K., Thomas, P., Manoranjan, S.: Automatic recovery of a combat aircraft from a completed cobra and Herbst maneuver: a sliding mode control based scheme. In: Proceedings of 2nd Indian Control Conference, pp. 259–266 (2016)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61973175, 61573197, 61973172 and the Key Technologies R&D Program of Tianjin Grant No. 19JCZDJC32800. The authors thank the editors and the anonymous reviewers for their helpful comments and suggestions that allowed us to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengqiang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Nomenclature

Appendix: Nomenclature

Nomenclature

Interpretation

\(\alpha ,\beta \)

Angle of attack, sideslip angle

V

Flight speed

g

Gravitational acceleration

\(\mu \)

Bank angle about the velocity vector

\(\gamma \)

Flight path angle

\(\chi \)

Velocity heading angle

T

Total engine thrust

\(\bar{q}\)

Dynamic pressure

\(I_{xx},I_{yy},I_{zz}\)

Roll, pitch, yaw inertia moments

pqr

Components of angular velocity

\(x_E,y_E,z_E\)

Position coordinates

\(C_{x\_\mathrm{tot}}\)

Aerodynamic force coefficient in x axis

\(C_{y\_\mathrm{tot}}\)

Aerodynamic force coefficient in y axis

\(C_{z\_\mathrm{tot}}\)

Aerodynamic force coefficient in z axis

\(C_{l\_\mathrm{tot}}\)

Aerodynamic torque coefficient in x axis

\(C_{m\_\mathrm{tot}}\)

Aerodynamic torque coefficient in y axis

\(C_{n\_\mathrm{tot}}\)

Aerodynamic torque coefficient in z axis

\(T_x,T_y,T_z\)

Thrust components in three axes

lmn

Aerodynamic torque

\(l_T,m_T,n_T\)

Thrust vector torque

\(\delta _e,\delta _a,\delta _r\)

Aerodynamic surfaces deflection angles

\(\delta _x,\delta _y,\delta _z\)

Thrust vector deflection angles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Sun, M., Chen, Z. et al. Super-twisting sliding mode control for aircraft at high angle of attack based on finite-time extended state observer. Nonlinear Dyn 99, 2785–2799 (2020). https://doi.org/10.1007/s11071-020-05481-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05481-1

Keywords

Navigation