Skip to main content
Log in

Electronic circuit equivalent of a mechanical impacting system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Mechanical impacting systems exhibit a large array of interesting dynamical behaviors including a large amplitude chaotic oscillation close to the grazing condition. This phenomenon has been explained by means of square-root singularity and the occurrence of dangerous border collision bifurcation. However, experimental investigation in the area is constrained by the fact that the parameters of such a mechanical system cannot be changed easily. Here, we propose an electronic circuit that can act as an analog of an impacting mechanical system. We show that the phenomena earlier reported through numerical simulation (like narrow-band chaos, finger-shaped attractor, etc.) occur in this system also. We have experimentally obtained the evolution of the chaotic attractor at grazing as the stiffness ratio is varied—which is not possible in mechanical experiments. We experimentally confirm the theoretical prediction that the occurrence of narrow-band chaos can be avoided for some parameter settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Banerjee, S., Ing, J., Pavlovskaia, E., Wiercigroch, M., Reddy, R.K.: Invisible grazings and dangerous bifurcations in impacting systems: the problem of narrow-band chaos. Phys. Rev. E 79(3), 037201 (2009)

    Article  Google Scholar 

  2. Blazejczyk-Okolewska, B.: Analysis of an impact damper of vibrations. Chaos Solitons Fract. 12(11), 1983–1988 (2001)

    Article  Google Scholar 

  3. Błazejczyk-Okolewska, B., Czołczyński, K.: Some aspects of the dynamical behaviour of the impact force generator. Chaos Solitons Fract. 9(8), 1307–1320 (1998)

    Article  Google Scholar 

  4. Blazejczyk-Okolewska, B., Czolczynski, K., Kapitaniak, T.: Hard versus soft impacts in oscillatory systems modeling. Commun. Nonlinear Sci. Numer. Simul. 15(5), 1358–1367 (2010)

    Article  MathSciNet  Google Scholar 

  5. Blazejczyk-Okolewska, B., Kapitaniak, T.: Dynamics of impact oscillator with dry friction. Chaos Solitons Fract. 7(9), 1455–1459 (1996)

    Article  Google Scholar 

  6. Blażejczyk-Okolewska, B., Kapitaniak, T.: Co-existing attractors of impact oscillator. Chaos Solitons Fract. 9(8), 1439–1443 (1998)

    Article  Google Scholar 

  7. Błazejczyk-Okolewska, B., Peterka, F.: An investigation of the dynamic system with impacts. Chaos Solitons Fract. 9(8), 1321–1338 (1998)

    Article  Google Scholar 

  8. Budd, C.: Grazing in impact oscillators. In: Branner, B., Hjorth, P. (eds.) Real and complex dynamical systems, pp. 47–63. Springer, Berlin (1995)

    Chapter  Google Scholar 

  9. Budd, C., Dux, F.: Chattering and related behaviour in impact oscillators. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 347(1683), 365–389 (1994)

    MATH  Google Scholar 

  10. Dankowicz, H., Nordmark, A.B.: On the origin and bifurcations of stick-slip oscillations. Phys. D Nonlinear Phenom. 136(3–4), 280–302 (2000)

    Article  MathSciNet  Google Scholar 

  11. Di Bernardo, M., Budd, C., Champneys, A.: Normal form maps for grazing bifurcations in n-dimensional piecewise-smooth dynamical systems. Phys. D Nonlinear Phenom. 160(3–4), 222–254 (2001)

    Article  MathSciNet  Google Scholar 

  12. Di Bernardo, M., Kowalczyk, P., Nordmark, A.: Bifurcations of dynamical systems with sliding: derivation of normal-form mappings. Phys. D Nonlinear Phenom. 170(3–4), 175–205 (2002)

    Article  MathSciNet  Google Scholar 

  13. Feigin, M.: On the structure of c-bifurcation boundaries of piecewise-continuous systems: Pmm vol. 42, no. 5, 1978, pp. 820–829. J. Appl. Math. Mech. 42(5), 885–895 (1978)

  14. Feigin, M.: Forced Oscillations in Systems with Discontinuous Nonlinearities. Nauka, Moscow (1994)

    MATH  Google Scholar 

  15. George, C., Virgin, L.N., Witelski, T.: Experimental study of regular and chaotic transients in a non-smooth system. Int. J Non-Linear Mech. 81, 55–64 (2016)

    Article  Google Scholar 

  16. Ing, J., Pavlovskaia, E., Wiercigroch, M.: Dynamics of a nearly symmetrical piecewise linear oscillator close to grazing incidence: modelling and experimental verification. Nonlinear Dyn. 46(3), 225–238 (2006)

    Article  Google Scholar 

  17. Ing, J., Pavlovskaia, E., Wiercigroch, M., Banerjee, S.: Experimental study of impact oscillator with one-sided elastic constraint. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366(1866), 679–705 (2007)

    Article  Google Scholar 

  18. Ivanov, A.: Stabilization of an impact oscillator near grazing incidence owing to resonance. J. Sound Vib. 162, 562–565 (1993)

    Article  Google Scholar 

  19. Kundu, S., Banerjee, S., Ing, J., Pavlovskaia, E., Wiercigroch, M.: Singularities in soft-impacting systems. Phys. D Nonlinear Phenom. 241(5), 553–565 (2012)

    Article  Google Scholar 

  20. Lenci, S., Rega, G.: A procedure for reducing the chaotic response region in an impact mechanical system. Nonlinear Dyn. 15(4), 391–409 (1998)

    Article  MathSciNet  Google Scholar 

  21. Luo, G.: Period-doubling bifurcations and routes to chaos of the vibratory systems contacting stops. Phys. Lett. A 323(3–4), 210–217 (2004)

    Article  MathSciNet  Google Scholar 

  22. Luo, G., Xie, J.: Hopf bifurcations and chaos of a two-degree-of-freedom vibro-impact system in two strong resonance cases. Int. J. Non-Linear Mech. 37(1), 19–34 (2002)

    Article  Google Scholar 

  23. Luo, G., Zhang, Y., Xie, J., Zhang, J.: Periodic-impact motions and bifurcations of vibro-impact systems near 1: 4 strong resonance point. Commun. Nonlinear Sci. Numer. Simul. 13(5), 1002–1014 (2008)

    Article  MathSciNet  Google Scholar 

  24. Luo, G., Zhang, Y., Zhang, J., Xie, J.: Periodic motions and bifurcations of vibro-impact systems near a strong resonance point. In: Nonlinear Science And Complexity, pp. 193–203. World Scientific (2007)

  25. Ma, Y., Agarwal, M., Banerjee, S.: Border collision bifurcations in a soft impact system. Phys. Lett. A 354(4), 281–287 (2006)

    Article  Google Scholar 

  26. Ma, Y., Ing, J., Banerjee, S., Wiercigroch, M., Pavlovskaia, E.: The nature of the normal form map for soft impacting systems. Int. J. Non-Linear Mech. 43(6), 504–513 (2008)

    Article  Google Scholar 

  27. Nordmark, A.B.: Non-periodic motion caused by grazing incidence in an impact oscillator. J. Sound Vib. 145(2), 279–297 (1991)

    Article  Google Scholar 

  28. Pavlovskaia, E., Wiercigroch, M.: Analytical drift reconstruction for visco-elastic impact oscillators operating in periodic and chaotic regimes. Chaos Solitons Fract. 19(1), 151–161 (2004)

    Article  Google Scholar 

  29. Pavlovskaia, E., Wiercigroch, M., Grebogi, C.: Two-dimensional map for impact oscillator with drift. Phys. Rev. E 70(3), 036201 (2004)

    Article  Google Scholar 

  30. Peterka, F., Vacik, J.: Transition to chaotic motion in mechanical systems with impacts. J. Sound Vib. 154(1), 95–115 (1992)

    Article  MathSciNet  Google Scholar 

  31. Shaw, S.W., Holmes, P.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90(1), 129–155 (1983)

    Article  MathSciNet  Google Scholar 

  32. Suda, N., Banerjee, S.: Why does narrow band chaos in impact oscillators disappear over a range of frequencies? Nonlinear Dyn. 86(3), 2017–2022 (2016)

    Article  Google Scholar 

  33. Thota, P., Dankowicz, H.: Continuous and discontinuous grazing bifurcations in impacting oscillators. Phys. D Nonlinear Phenom. 214(2), 187–197 (2006)

    Article  MathSciNet  Google Scholar 

  34. Virgin, L.N.: Introduction to Experimental Nonlinear Dynamics: A Case Study in Mechanical Vibration. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  35. Virgin, L.N., George, C., Kini, A.: Experiments on a non-smoothly-forced oscillator. Phys. D Nonlinear Phenom. 313, 1–10 (2015)

    Article  MathSciNet  Google Scholar 

  36. Wagg, D.: Rising phenomena and the multi-sliding bifurcation in a two-degree of freedom impact oscillator. Chaos Solitons Fract. 22(3), 541–548 (2004)

    Article  Google Scholar 

  37. Whiston, G.: Global dynamics of a vibro-impacting linear oscillator. J. Sound Vib. 118(3), 395–424 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

SS acknowledges financial support from the Department of Science of Technology, Government of India, in the form of INSPIRE Fellowship, Reference No. IF150667. SB acknowledges financial support from the Science and Engineering Research Board, Department of Science and Technology, Government of India, in the form of J.C. Bose Fellowship, Project No. SB/S3/JCB-023/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyajit Seth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seth, S., Banerjee, S. Electronic circuit equivalent of a mechanical impacting system. Nonlinear Dyn 99, 3113–3121 (2020). https://doi.org/10.1007/s11071-019-05457-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05457-w

Keywords

Navigation