Skip to main content
Log in

Adaptation of dynamical properties of time series data and its applications in deep brain stimulation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The chaotic nature of the brain can be observed by electroencephalogram signals. This chaotic behavior can be affected by the progressive nature of neurodegenerative disorders like Parkinson disease. The gradual changes in dynamical behavior of brain can be tracked to facilitate effective and timely treatment. Deep brain stimulation (DBS) is used in therapy when the medication stops working. We investigate the use of chaotic signal as stimulus in DBS. We stimulate a simulated model of isolated neuron with different types of stimuli to see if periodicity in neuronal spiking can be disrupted and show that neuron, when stimulated with chaotic signal, does fire up in non-periodic/chaotic manner. Furthermore, as a step toward the development of our system for estimation of chaotic behavior of brain, we investigate the use of recurrent neural networks to adapt the chaotic characteristics of a chaotic time series in this research work. We explore two different setups of long short-term memory (LSTM). In first setup, we define three unique topologies of LSTM network and analyze those for chaotic parameter estimation in seven different test cases for shallow and deep networks. We show that the deep LSTM networks are capable of modeling the chaotic behavior of a wide range of parameters and that the network performs the best when the architecture is driven by chaotic attributes of the time series data. In second setup, we use LSTM network in a traditional configuration to predict the chaotic time series data and demonstrate that the LSTM network can make prediction over a range of chaotic parameters with adequate accuracy. This provides the basis for the generation of chaotic stimulation signals when required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Moreno-Valenzuela, J., Torres-Torres, C.: Adaptive chaotification of robot manipulators via neural networks with experimental evaluations. Neurocomputing 182, 56–65 (2016). https://doi.org/10.1016/j.neucom.2015.11.085

    Article  Google Scholar 

  2. Munir, F.A., Zia, M., Mahmood, H.: Designing multi-dimensional logistic map with fixed-point finite precision. Nonlinear Dyn. 97(4), 2147–2158 (2019). https://doi.org/10.1007/s11071-019-05112-4

    Article  MATH  Google Scholar 

  3. Hafstein, S.F., Valfells, A.: Efficient computation of Lyapunov functions for nonlinear systems by integrating numerical solutions. Nonlinear Dyn. 97(3), 1895–1910 (2019). https://doi.org/10.1007/s11071-018-4729-5

    Article  Google Scholar 

  4. Restrepo, J.F., Schlotthauer, G.: Automatic estimation of attractor invariants. Nonlinear Dyn. 91(3), 1681–1696 (2018). https://doi.org/10.1007/s11071-017-3974-3

    Article  MATH  Google Scholar 

  5. Jia, Y., Gu, H.: Identifying nonlinear dynamics of brain functional networks of patients with schizophrenia by sample entropy. Nonlinear Dyn. 96(4), 2327–2340 (2019). https://doi.org/10.1007/s11071-019-04924-8

    Article  Google Scholar 

  6. Lotte, F.: A tutorial on EEG signal-processing techniques for mental-state recognition in brain–computer interfaces. In: Miranda ER, Castet J (eds.) Guide to Brain-Computer Music Interfacing, pp. 133–161. Springer (2014)

  7. Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (2001)

    Article  Google Scholar 

  8. Falahian, R., Dastjerdi, M.M., Molaie, M., Jafari, S., Gharibzadeh, S.: Artificial neural network-based modeling of brain response to flicker light. Nonlinear Dyn. 81(4), 1951–1967 (2015)

    Article  MathSciNet  Google Scholar 

  9. Lainscsek, C., Weyhenmeyer, J., Hernandez, M.E., Poizner, H., Sejnowski, T.J.: Non-linear dynamical classification of short time series of the Rössler system in high noise regimes. Front. Neurol. 4, 182 (2013)

    Google Scholar 

  10. Stam, C.J.: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116(10), 2266–2301 (2005)

    Article  Google Scholar 

  11. Takens, F.: Detecting strange attractors in turbulence. In: Rand D, Young L-S (eds.) Dynamical Systems and Turbulence, Warwick 1980, pp. 366–381. Springer (1981)

  12. Kennel, M.B., Brown, R., Abarbanel, H.D.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403 (1992)

    Article  Google Scholar 

  13. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134 (1986)

    Article  MathSciNet  Google Scholar 

  14. Ramasubbu, R., Lang, S., Kiss, Z.H.: Dosing of electrical parameters in deep brain stimulation (DBS) for intractable depression: a review of clinical studies. Front. Psychiatry 9, 302 (2018)

    Article  Google Scholar 

  15. Rizzone, M., Lanotte, M., Bergamasco, B., Tavella, A., Torre, E., Faccani, G., Melcarne, A., Lopiano, L.: Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. J. Neurol. Neurosurg. Psychiatry 71(2), 215–219 (2001)

    Article  Google Scholar 

  16. Gorman, P.H., Mortimer, J.T.: The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Trans. Biomed. Eng. BME–30(7), 407–414 (1983)

    Article  Google Scholar 

  17. Grill, W., Mortimer, J.T.: The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Trans. Biomed. Eng. 43(2), 161–166 (1996)

    Article  Google Scholar 

  18. Kuncel, A.M., Cooper, S.E., Wolgamuth, B.R., Clyde, M.A., Snyder, S.A., Montgomery Jr., E.B., Rezai, A.R., Grill, W.M.: Clinical response to varying the stimulus parameters in deep brain stimulation for essential tremor. Mov. Disord. 21(11), 1920–1928 (2006)

    Article  Google Scholar 

  19. Koeglsperger, T., Palleis, C., Hell, F., Mehrkens, J.H., Bötzel, K.: Deep brain stimulation programming for movement disorders: current concepts and evidence-based strategies. Front. Neurol. 10, 410 (2019). https://doi.org/10.3389/fneur.2019.00410

    Article  Google Scholar 

  20. Montgomery Jr., E.B.: Microelectrode targeting of the subthalamic nucleus for deep brain stimulation surgery. Mov. Disord. 27(11), 1387–1391 (2012)

    Article  Google Scholar 

  21. van den Heuvel, M.P., Pol, H.E.H.: Exploring the brain network: a review on resting-state FMRI functional connectivity. Eur. Neuropsychopharmacol. 20(8), 519–534 (2010). https://doi.org/10.1016/j.euroneuro.2010.03.008

    Article  Google Scholar 

  22. Kahan, J., Urner, M., Moran, R., Flandin, G., Marreiros, A., Mancini, L., White, M., Thornton, J., Yousry, T., Zrinzo, L., Hariz, M., Limousin, P., Friston, K., Foltynie, T.: Resting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on ‘effective’ connectivity. Brain 137(4), 1130–1144 (2014). https://doi.org/10.1093/brain/awu027

    Article  Google Scholar 

  23. Kahan, J., Mancini, L., Flandin, G., White, M., Papadaki, A., Thornton, J., Yousry, T., Zrinzo, L., Hariz, M., Limousin, P., Friston, K., Foltynie, T.: Deep brain stimulation has state-dependent effects on motor connectivity in Parkinson’s disease. Brain 142(8), 2417–2431 (2019). https://doi.org/10.1093/brain/awz164

    Article  Google Scholar 

  24. Baysal, V., Saraç, Z., Yilmaz, E.: Chaotic resonance in Hodgkin–Huxley neuron. Nonlinear Dyn. 97(2), 1275–1285 (2019). https://doi.org/10.1007/s11071-019-05047-w

    Article  MATH  Google Scholar 

  25. Nobukawa, S., Nishimura, H., Yamanishi, T., Liu, J.Q.: Chaotic states induced by resetting process in Izhikevich neuron model. J. Artif. Intell. Soft Comput. Res. 5(2), 109–119 (2015)

    Article  Google Scholar 

  26. Nobukawa, S., Nishimura, H., Yamanishi, T., Liu, J.Q.: Analysis of chaotic resonance in Izhikevich neuron model. PLoS ONE 10(9), 1–22 (2015). https://doi.org/10.1371/journal.pone.0138919

    Article  Google Scholar 

  27. Reilly, J.P., Freeman, V.T., Larkin, W.D.: Sensory effects of transient electrical stimulation–evaluation with a neuroelectric model. IEEE Trans. Biomed. Eng. 12, 1001–1011 (1985)

    Article  Google Scholar 

  28. Wang, L., Li, Lp: An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systems. Expert Syst. Appl. 37(2), 1279–1285 (2010)

    Article  Google Scholar 

  29. Wang, L., Xu, Y.: An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems. Expert Syst. Appl. 38(12), 15103–15109 (2011)

    Article  MathSciNet  Google Scholar 

  30. Tao, C., Zhang, Y., Du, G., Jiang, J.J.: Estimating model parameters by chaos synchronization. Phys. Rev. E 69(3), 036204 (2004)

    Article  Google Scholar 

  31. Jafari, S., Sprott, J.C., Pham, V.T., Golpayegani, S.M.R.H., Jafari, A.H.: A new cost function for parameter estimation of chaotic systems using return maps as fingerprints. Int. J. Bifurc. Chaos 24(10), 1450134 (2014)

    Article  MathSciNet  Google Scholar 

  32. Han, M., Xu, M., Liu, X., Wang, X.: Online multivariate time series prediction using SCKF-\(\gamma \)ESN model. Neurocomputing 147, 315–323 (2015)

    Article  Google Scholar 

  33. Yeo, K.: Model-free prediction of noisy chaotic time series by deep learning. arXiv preprint arXiv:1710.01693 (2017)

  34. Sim4life by ZMT: Sim4life simulator (2019). http://www.zurichmedtech.com

  35. Grossman, N., Bono, D., Dedic, N., Kodandaramaiah, S.B., Rudenko, A., Suk, H.J., Cassara, A.M., Neufeld, E., Kuster, N., Tsai, L.H., Pascual-Leone, A.: Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169(6), 1029–1041 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research work is funded by University of Regina Brain Research grant. This funding was donated to University of Regina by an anonymous donor in November 2015. The neuron simulations are conducted using Sim4Life by ZMT simulator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Aamir Ali Shah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.A.A., Bais, A. & Zhang, L. Adaptation of dynamical properties of time series data and its applications in deep brain stimulation. Nonlinear Dyn 99, 3231–3251 (2020). https://doi.org/10.1007/s11071-019-05453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05453-0

Keywords

Navigation