Skip to main content
Log in

Global detection of detached periodic solution branches of friction-damped mechanical systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Two novel methods to determine detached periodic solution branches of low-dimensional and large-scale friction-damped mechanical systems have been developed. The approach for low-dimensional systems is an extension of the global terrain method and consists of three steps: First, the non-smooth elastic Coulomb slider is temporarily modified to pose a \(C^2\) continuous energy surface in the frequency domain. Second, the global terrain method is extended to rescale the search space consecutively along multiple eigendirections of the Hessian at the solution points, facilitating the determination of disconnected solutions. Finally, found solutions are used as the starting points for a homotopy strategy to detect the solutions of the original non-smooth problem. The method for large-scale systems based on an invariant manifold approach consists of three steps: First, the system’s dimension is decreased following a nonlinear modal reduction leading to a two-dimensional surrogate problem. Second, various subspaces for direct extrema, direct bifurcation, constant frequency, and constant amplitude solution detection are defined. Finally, a deterministic line search, a stochastic global solution method, and a newly developed deterministic line deflation are applied to the problem. The proposed methods are applied to low-dimensional and large-scale friction-damped mechanical systems simultaneously subjected to external and self-excitation as well as a low-dimensional mechanical system with shape-memory alloy nonlinearity subjected to external excitation. Their ability to find all solutions is discussed and compared with existing solution procedures such as bifurcation tracking, deflation, homotopy, and the global terrain method. Depending on the chosen subspace for the global search, the proposed methods are capable of providing additional detached solution branches (isola).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

References

  1. Iwan, W.D.: Steady-state dynamic response of a limited slip system. J. Appl. Mech. 35(2), 322–326 (1968)

    Google Scholar 

  2. Iwan, W.D., Furuike, D.M.: The transient and steady-state response of a hereditary system. J. Non-Linear Mech. 8(4), 395–406 (1973)

    Google Scholar 

  3. Capecchi, D., Vestroni, F.: Periodic response of a class of hysteretic oscillators. Int. J. Non-Linear Mech. 25(2–3), 309–317 (1990)

    Google Scholar 

  4. Hayashi, C.: The influence of hysteresis on nonlinear resonance. J. Frankl. Inst. 281(5), 379–386 (1966). https://doi.org/10.1016/0016-0032(66)90299-7

    Google Scholar 

  5. Salles, L., Staples, B., Hoffmann, N., Schwingshackl, C.: Continuation techniques for analysis of whole aeroengine dynamics with imperfect bifurcations and isolated solutions. Nonlinear Dyn. 86(3), 1897–1911 (2016). https://doi.org/10.1007/s11071-016-3003-y

    Google Scholar 

  6. Perret-Liaudet, J., Rigaud, E.: Superharmonic resonance of order 2 for an impacting Hertzian contact oscillator: theory and experiments. J. Comput. Nonlinear Dyn. 2(2), 190 (2007). https://doi.org/10.1115/1.2447549

    Google Scholar 

  7. Bureau, E., Schilder, F., Elmegård, M., Santos, I.F., Thomsen, J.J., Starke, J.: Experimental bifurcation analysis of an impact oscillator—determining stability. J. Sound Vib. 333(21), 5464–5474 (2014). https://doi.org/10.1016/j.jsv.2014.05.032

    Google Scholar 

  8. Elmegård, M., Krauskopf, B., Osinga, H.M., Starke, J., Thomsen, J.J.: Bifurcation analysis of a smoothed model of a forced impacting beam and comparison with an experiment. Nonlinear Dyn. 77(3), 951–966 (2014). https://doi.org/10.1007/s11071-014-1353-x

    Google Scholar 

  9. Takács, D., Stépán, G., Hogan, S.J.: Isolated large amplitude periodic motions of towed rigid wheels. Nonlinear Dyn. 52(1–2), 27–34 (2008). https://doi.org/10.1007/s11071-007-9253-y

    Google Scholar 

  10. Doole, S.H., Hogan, S.J.: A piece wise linear suspension bridge model: nonlinear dynamics and orbit continuation. Dyn. Stab. Syst. 11(1), 19–47 (1996). https://doi.org/10.1080/02681119608806215

    Google Scholar 

  11. Rega, G.: Nonlinear vibrations of suspended cables—part ii: deterministic phenomena. Appl. Mech. Rev. 57(6), 479–514 (2004)

    Google Scholar 

  12. Lenci, S., Ruzziconi, L.: Nonlinear phenomena in the single-mode dynamics of a cable-supported beam. Int. J. Bifurc. Chaos 19(3), 923–945 (2009). https://doi.org/10.1142/S021812740902338X

    Google Scholar 

  13. Duan, C., Rook, T.E., Singh, R.: Sub-harmonic resonance in a nearly pre-loaded mechanical oscillator. Nonlinear Dyn. 50(3), 639–650 (2007). https://doi.org/10.1007/s11071-006-9185-y

    Google Scholar 

  14. Duan, C., Singh, R.: Isolated sub-harmonic resonance branch in the frequency response of an oscillator with slight asymmetry in the clearance. J. Sound Vib. 314(1–2), 12–18 (2008). https://doi.org/10.1016/j.jsv.2007.12.040

    Google Scholar 

  15. von Wagner, U., Lentz, L.: On artifact solutions of semi-analytic methods in nonlinear dynamics. Arch. Appl. Mech. 88(10), 1713–1724 (2018). https://doi.org/10.1007/s00419-018-1397-3

    Google Scholar 

  16. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations, Wiley Classics Library Edition. Wiley, New York (1995)

    Google Scholar 

  17. Lee, S.I., Howell, S.W., Raman, A., Reifenberger, R.: Nonlinear dynamic perspectives on dynamic force microscopy. Ultramicroscopy 97(1–4), 185–198 (2003). https://doi.org/10.1016/S0304-3991(03)00043-3

    Google Scholar 

  18. Misra, S., Dankowicz, H., Paul, M.R.: Degenerate discontinuity-induced bifurcations in tapping-mode atomic-force microscopy. Physica D 239(1–2), 33–43 (2010). https://doi.org/10.1016/j.physd.2009.10.001

    Google Scholar 

  19. Koenigsberg, W.D., Dunn, J.C.: Jump resonant frequency islands in nonlinear feedback control systems. IEEE Trans. Autom. Control 20(2), 208–217 (1975). https://doi.org/10.1109/TAC.1975.1100914

    Google Scholar 

  20. Fukuma, A., Matsubara, M.: Jump resonance in nonlinear feedback systems—part i: approximate analysis by the describing-function method. IEEE Trans. Autom. Control 23(5), 891–896 (1978)

    Google Scholar 

  21. Hirai, K., Sawai, N.: A general criterion for jump resonance of nonlinear control systems. IEEE Trans. Autom. Control 23(5), 896–901 (1978)

    Google Scholar 

  22. Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300(3–5), 522–551 (2007). https://doi.org/10.1016/j.jsv.2006.06.074

    Google Scholar 

  23. Starosvetsky, Y., Gendelman, O.V.: Vibration absorption in systems with a nonlinear energy sink: nonlinear damping. J. Sound Vib. 324(3–5), 916–939 (2009). https://doi.org/10.1016/j.jsv.2009.02.052

    Google Scholar 

  24. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Experimental investigation and design optimization of targeted energy transfer under periodic forcing. J. Vib. Acoust. 136(2), 021021 (2014)

    Google Scholar 

  25. Gatti, G.: Uncovering inner detached resonance curves in coupled oscillators with nonlinearity. J. Sound Vib. 372, 239–254 (2016). https://doi.org/10.1016/j.jsv.2016.02.027

    Google Scholar 

  26. Alexander, N.A., Schilder, F.: Exploring the performance of a nonlinear tuned mass damper. J. Sound Vib. 319(1–2), 445–462 (2009). https://doi.org/10.1016/j.jsv.2008.05.018

    Google Scholar 

  27. Habib, G., Detroux, T., Viguié, R., Kerschen, G.: Nonlinear generalization of Den Hartog’s equal-peak method. Mech. Syst. Signal Process. 52–53, 17–28 (2015). https://doi.org/10.1016/j.ymssp.2014.08.009

    Google Scholar 

  28. Habib, G., Kerschen, G.: A principle of similarity for nonlinear vibration absorbers. Physica D 332, 1–8 (2016). https://doi.org/10.1016/j.physd.2016.06.001

    Google Scholar 

  29. Cirillo, G.I., Habib, G., Kerschen, G., Sepulchre, R.: Analysis and design of nonlinear resonances via singularity theory. J. Sound Vib. 392, 295–306 (2017). https://doi.org/10.1016/j.jsv.2016.12.044

    Google Scholar 

  30. Kuether, R.J., Renson, L., Detroux, T., Grappasonni, C., Kerschen, G., Allen, M.S.: Nonlinear normal modes, modal interactions and isolated resonance curves. J. Sound Vib. 351, 299–310 (2015). https://doi.org/10.1016/j.jsv.2015.04.035

    Google Scholar 

  31. Noël, J.P., Detroux, T., Masset, L., Kerschen, G., Virgin, L.N.: Isolated response curves in a base-excited, two-degree-of-freedom, nonlinear system. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V006T10A043 (2015) https://doi.org/10.1115/DETC2015-46106

  32. Arroyo, S.I., Zanette, D.H.: Duffing revisited: phase-shift control and internal resonance in self-sustained oscillators. Eur. Phys. J. B 89(1), 237 (2016). https://doi.org/10.1140/epjb/e2015-60517-3

    Google Scholar 

  33. Detroux, T., Noël, J.P., Kerschen, G., Virgin, L.N.: Experimental study of isolated response curves in a two-degree-of-freedom nonlinear system. Nonlinear Dyn., vol. 1, pp. 229–235. Springer, Cham (2016)

    Google Scholar 

  34. Hill, T.L., Neild, S.A., Cammarano, A.: An analytical approach for detecting isolated periodic solution branches in weakly nonlinear structures. J. Sound Vib. 379, 150–165 (2016). https://doi.org/10.1016/j.jsv.2016.05.030

    Google Scholar 

  35. Mangussi, F., Zanette, D.H.: Internal resonance in a vibrating beam: a zoo of nonlinear resonance peaks. PLoS ONE 11(9), e0162365 (2016). https://doi.org/10.1371/journal.pone.0162365

    Google Scholar 

  36. Shaw, A.D., Hill, T.L., Neild, S.A., Friswell, M.I.: Periodic responses of a structure with 3:1 internal resonance. Mech. Syst. Signal Process. 81, 19–34 (2016). https://doi.org/10.1016/j.ymssp.2016.03.008

    Google Scholar 

  37. DiBerardino, L.A., Dankowicz, H.: Accounting for nonlinearities in open-loop protocols for symmetry fault compensation. J. Comput. Nonlinear Dyn. 9(2), 021002 (2014)

    Google Scholar 

  38. Habib, G., Cirillo, G.I., Kerschen, G.: Uncovering detached resonance curves in single-degree-of-freedom systems. Procedia Eng. 199, 649–656 (2017). https://doi.org/10.1016/j.proeng.2017.09.116

    Google Scholar 

  39. Habib, G., Cirillo, G.I., Kerschen, G.: Isolated resonances and nonlinear damping. Nonlinear Dyn. 93(3), 979–994 (2018). https://doi.org/10.1007/s11071-018-4240-z

    Google Scholar 

  40. Kappauf, J., Hetzler, H.: Bifurcations and limit cycles due to self-excitation in nonlinear systems with joint friction: phenomena and approximation schemes. Proc. ISMA 2018, 3343–3352 (2018)

    Google Scholar 

  41. Detroux, T., Renson, L., Masset, L., Kerschen, G.: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Methods Appl. Mech. Eng. 296, 18–38 (2015). https://doi.org/10.1016/j.cma.2015.07.017

    Google Scholar 

  42. Renson, L., Barton, D.A.W., Neild, S.A.: Experimental tracking of limit-point bifurcations and backbone curves using control-based continuation. Int. J. Bifurc. Chaos 27(01), 1730002 (2017). https://doi.org/10.1142/S0218127417300026

    Google Scholar 

  43. Brown, K.M., Gearhart, W.B.: Deflation techniques for the calculation of further solutions of a nonlinear system. Numer. Math. 16(4), 1–3 (1971). https://doi.org/10.1016/B978-0-08-009670-4.50006-9

    Google Scholar 

  44. Eaves, B.Curtis (ed.): Homotopy Methods and Global Convergence, vol. 13. Springer, New York (1983)

    Google Scholar 

  45. Ojika, T.: Modified deflation algorithm for the solution of singular problems. I. A system of nonlinear algebraic equations. J. Math. Anal. Appl. 123(1), 199–221 (1987). https://doi.org/10.1007/978-1-349-18669-3_1

    Google Scholar 

  46. Farrell, P.E., Birkisson, Á., Funke, S.W.: Deflation techniques for finding distinct solutions of nonlinear partial differential equations. SIAM J. Sci. Comput. 37(4), A2026–A2045 (2015). https://doi.org/10.1137/140984798

    Google Scholar 

  47. Kuno, M., Seader, J.D.: Computing all real solutions to systems of nonlinear equations with a global fixed-point homotopy. Ind. Eng. Chem. Res. 27(7), 1320–1329 (1988). https://doi.org/10.1021/ie00079a037

    Google Scholar 

  48. Gritton, K.S., Seader, J.D., Lin, W.J.: Global homotopy continuation procedures for seeking all roots of a nonlinear equation. Comput. Chem. Eng. 25(7–8), 1003–1019 (2001). https://doi.org/10.1016/S0098-1354(01)00675-5

    Google Scholar 

  49. Lee, J., Chiang, H.D.: Convergent regions of the Newton homotopy method for nonlinear systems: theory and computational applications. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 48(1), 51–66 (2001)

    Google Scholar 

  50. Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods, Classics in Applied Mathematics. SIAM, Philadelphia, PA (2003)

    Google Scholar 

  51. Malinen, I., Tanskanen, J.: Modified bounded homotopies to enable a narrow bounding zone. Chem. Eng. Sci. 63(13), 3419–3430 (2008). https://doi.org/10.1016/j.ces.2008.04.006

    Google Scholar 

  52. Malinen, I., Tanskanen, J.: Homotopy parameter bounding in increasing the robustness of homotopy continuation methods in multiplicity studies. Comput. Chem. Eng. 34(11), 1761–1774 (2010). https://doi.org/10.1016/j.compchemeng.2010.03.013

    Google Scholar 

  53. Malinen, I., Kangas, J., Tanskanen, J.: A new newton homotopy based method for the robust determination of all the stationary points of the tangent plane distance function. Chem. Eng. Sci. 84, 266–275 (2012). https://doi.org/10.1016/j.ces.2012.08.037

    Google Scholar 

  54. Pan, B., Lu, P., Pan, X., Ma, Y.: Double-homotopy method for solving optimal control problems. J. Guid. Control Dyn. 39(8), 1706–1720 (2016). https://doi.org/10.2514/1.G001553

    Google Scholar 

  55. Rahimian, S.K., Jalali, F., Seader, J.D., White, R.E.: A new homotopy for seeking all real roots of a nonlinear equation. Comput. Chem. Eng. 35(3), 403–411 (2011). https://doi.org/10.1016/j.compchemeng.2010.04.007

    Google Scholar 

  56. Rahimian, S.K., Jalali, F., Seader, J.D., White, R.E.: A robust homotopy continuation method for seeking all real roots of unconstrained systems of nonlinear algebraic and transcendental equations. Ind. Eng. Chem. Res. 50(15), 8892–8900 (2011b). https://doi.org/10.1021/ie101966b

    Google Scholar 

  57. Grolet, A., Thouverez, F.: Computing multiple periodic solutions of nonlinear vibration problems using the harmonic balance method and groebner bases. Mech. Syst. Signal Process. 52–53, 529–547 (2015). https://doi.org/10.1016/j.ymssp.2014.07.015

    Google Scholar 

  58. Borisevich, V.D., Potemkin, V.G., Strunkov, S.P., Wood, H.G.: Global methods for solving systems of nonlinear algebraic equations. Comput. Math. Appl. 40(8–9), 1015–1025 (2000). https://doi.org/10.1016/S0898-1221(00)85012-9

    Google Scholar 

  59. Sarrouy, E., Thouverez, F.: Global search of non-linear systems periodic solutions: a rotordynamics application. Mech. Syst. Signal Process. 24(6), 1799–1813 (2010). https://doi.org/10.1016/j.ymssp.2010.02.001

    Google Scholar 

  60. Sarrouy, E., Grolet, A., Thouverez, F.: Global and bifurcation analysis of a structure with cyclic symmetry. Int. J. Non-Linear Mech. 46(5), 727–737 (2011). https://doi.org/10.1016/j.ijnonlinmec.2011.02.005

    Google Scholar 

  61. Lucia, A., Feng, Y.: Global terrain methods. Comput. Chem. Eng. 26(4–5), 529–546 (2002). https://doi.org/10.1016/S0098-1354(01)00777-3

    Google Scholar 

  62. Lucia, A., Feng, Y.: Multivariable terrain methods. AIChE J. 49(10), 2553–2563 (2003). https://doi.org/10.1002/aic.690491010

    Google Scholar 

  63. Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56(1), 149–154 (1989). https://doi.org/10.1115/1.3176036

    Google Scholar 

  64. Heinze, T., Panning-von Scheidt, L., Wallaschek, J., Hartung, A.: A taylor series expansion approach for nonlinear blade forced response prediction considering variable rotational speed. J. Eng. Gas Turbines Power 139(6), 062503 (2017). https://doi.org/10.1115/1.4035286

    Google Scholar 

  65. Adhikari, S.: Damping models for structural vibration. Dissertation, Cambridge University, Cambridge (2000)

  66. Craig, R.R., Bampton, M.C.: Coupling of substructures for dynamic analysis. AIAA J. 6(7), 1313–1319 (1968)

    Google Scholar 

  67. Balmès, Etienne: Parametric families of reduced finite element models. Theory and applications. Mech. Syst. Signal Process. 10(4), 381–394 (1996)

    Google Scholar 

  68. Marugabandhu, P., Griffin, J.H.: A reduced-order model for evaluating the effect of rotational speed on the natural frequencies and mode shapes of blades. J. Eng. Gas Turbines Power 125(3), 772–776 (2003)

    Google Scholar 

  69. Sternchüss, A., Balmes, E.: On the reduction of quasi-cyclic disk models with variable rotation speeds. In: Proceedings of the International Conference on Advanced Acoustics and Vibration (ISMA), pp. 3925–3939 (2006)

  70. Heinze, T., Panning-von Scheidt, L., Wallaschek, J., Hartung, A.: Nodal diameter-dependent modal damping method for nonlinear blade dynamics prediction considering variable rotational speed. In: Proceedings of ASME Turbo Expo 2017, p. V07BT35A018 (2017)

  71. Heinze, T., Panning-von Scheidt, L., Wallaschek, J., Hartung, A.: Rotational speed-dependent contact formulation for nonlinear blade dynamics prediction. J. Eng. Gas Turbines Power 141(4), 042503 (2019)

    Google Scholar 

  72. Nacivet, S., Pierre, C., Thouverez, F., Jezequel, L.: A dynamic Lagrangian frequency-time method for the vibration of dry-friction-damped systems. J. Sound Vib. 265(1), 201–219 (2003). https://doi.org/10.1016/S0022-460X(02)01447-5

    Google Scholar 

  73. Krack, M., Panning, L., Wallaschek, J., Siewert, C., Hartung, A.: Robust design of friction interfaces of bladed disks with respect to parameter uncertainties. In: ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, p. 1193, https://doi.org/10.1115/GT2012-68578 (Monday 11 June 2012)

  74. Hartung, A., Hackenberg, H.P., Krack, M., Gross, J., Heinze, T., Panning-von Scheidt, L.: Rig and engine validation of the nonlinear forced response analysis performed by the tool OrAgL. J. Eng. Gas Turbines Power 141(2), 021019 (2019)

    Google Scholar 

  75. van Humbeeck, J., Kustov, S.: Active and passive damping of noise and vibrations through shape memory alloys: applications and mechanisms. Smart Mater. Struct. 14(5), S171–S185 (2005). https://doi.org/10.1088/0964-1726/14/5/001

    Google Scholar 

  76. Bachmann, F., de Oliveira, R., Sigg, A., Schnyder, V., Delpero, T., Jaehne, R., Bergamini, A., Michaud, V., Ermanni, P.: Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study. Smart Mater. Struct. 21(7), 075027 (2012). https://doi.org/10.1088/0964-1726/21/7/075027

    Google Scholar 

  77. von Groll, G., Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241(2), 223–233 (2001). https://doi.org/10.1006/jsvi.2000.3298

    Google Scholar 

  78. Lazarus, A., Thomas, O.: A harmonic-based method for computing the stability of periodic solutions of dynamical systems. Comptes Rendus Mécanique 338(9), 510–517 (2010). https://doi.org/10.1016/j.crme.2010.07.020

    Google Scholar 

  79. Moore, G.: Floquet theory as a computational tool. SIAM J. Numer. Anal. 42(6), 2522–2568 (2005). https://doi.org/10.1137/S0036142903434175

    Google Scholar 

  80. Leine, R.I., Van Campen, D.H., Van de Vrande, B.L.: Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn. 23(2), 105–164 (2000). https://doi.org/10.1016/B978-1-85573-345-9.50005-4

    Google Scholar 

  81. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985). https://doi.org/10.1016/0167-2789(85)90011-9

    Google Scholar 

  82. Pandey, M., Rand, R.H., Zehnder, A.T.: Frequency locking in a forced Mathieu–van der Pol–Duffing system. Nonlinear Dyn. 54(1–2), 3–12 (2008). https://doi.org/10.1007/s11071-007-9238-x

    Google Scholar 

  83. Seydel, R.: Practical Bifurcation and Stability Analysis, Interdisciplinary Applied Mathematics, vol. 5, 3rd edn. Springer, New York (2010)

  84. Krack, M.: Nonlinear modal analysis of nonconservative systems: extension of the periodic motion concept. Comput. Struct. 154, 59–71 (2015). https://doi.org/10.1016/j.compstruc.2015.03.008

    Google Scholar 

  85. Rosenberg, R.M.: Normal modes of nonlinear dual-mode systems. J. Appl. Mech. 27(2), 263–268 (1960)

    Google Scholar 

  86. Shaw, S.W., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib. 164(1), 85–124 (1993)

    Google Scholar 

  87. Vakakis, A.: Non-linear normal modes (NNMS) and their applications in vibration theory: an overview. Mech. Syst. Signal Process. 11(1), 3–22 (1997)

    Google Scholar 

  88. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part i: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009). https://doi.org/10.1016/j.ymssp.2008.04.002

    Google Scholar 

  89. Laxalde, D., Thouverez, F.: Complex non-linear modal analysis for mechanical systems application to turbomachinery bladings with friction interfaces. J. Sound Vib. 322(4–5), 1009–1025 (2009). https://doi.org/10.1016/j.jsv.2008.11.044

    Google Scholar 

  90. Pesheck, E., Pierre, C., Shaw, S.W.: A new galerkin-based approach for accurate non-linear normal modes through invariant manifolds. J. Sound Vib. 249(5), 971–993 (2002). https://doi.org/10.1006/jsvi.2001.3914

    Google Scholar 

  91. Touzé, C., Amabili, M.: Nonlinear normal modes for damped geometrically nonlinear systems: application to reduced-order modelling of harmonically forced structures. J. Sound Vib. 298(4–5), 958–981 (2006). https://doi.org/10.1016/j.jsv.2006.06.032

    Google Scholar 

  92. Blanc, F., Touzé, C., Mercier, J.F., Ege, K., Bonnet Ben-Dhia, A.S.: On the numerical computation of nonlinear normal modes for reduced-order modelling of conservative vibratory systems. Mech. Syst. Signal Process. 36(2), 520–539 (2013). https://doi.org/10.1016/j.ymssp.2012.10.016

    Google Scholar 

  93. Krack, M.: Informal communication. Institute of Aircraft Propulsion Systems, University of Stuttgart (17 July 2019)

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Heinze.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinze, T., Panning-von Scheidt, L. & Wallaschek, J. Global detection of detached periodic solution branches of friction-damped mechanical systems. Nonlinear Dyn 99, 1841–1870 (2020). https://doi.org/10.1007/s11071-019-05425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05425-4

Keywords

Navigation