Skip to main content

Advertisement

Log in

Observer-based distributed control and synchronization analysis of inverter-based nonlinear power systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Inverter-based power system is essentially a nonlinear system, and the voltage and frequency are coupled to each other. As the nonlinear models of inverter-based power systems are considered, a novel observer-based secondary voltage and frequency restoration control scheme is proposed. Some features distinguish our control scheme from the existing secondary voltage and frequency control strategies. Firstly, the proposed control scheme can integrate the advantages of centralized and decentralized control systems. The designs of the voltage and frequency controllers are totally decoupled. Secondly, the transient stability conditions under the lossy-line network are derived and analyzed rigorously by applying large-signal stability analysis method. Thirdly, the proposed secondary control schemes are implemented in a fully distributed way such that the power systems can realize the plug-and-play function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Olivares, D., Mehrizi-Sani, A., Etemadi, A., et al.: Trends in microgrid control. IEEE Trans. Smart Grid 5(4), 1905–1919 (2014)

    Article  Google Scholar 

  2. Lopes, J.A.P., Moreira, C.L., Madureira, A.G.: Defining control strategies for MicroGrids islanded operation. IEEE Trans. Power Syst. 21(2), 916–924 (2006)

    Article  Google Scholar 

  3. Guerrero, J.M., Vasquez, J.C., Matas, J., et al.: Hierarchical control of droop-controlled ac and dc microgrids—a general approach toward standardization. IEEE Trans. Ind. Electron. 58(1), 158–172 (2011)

    Article  Google Scholar 

  4. Guerrero, J.M., Chandorkar, M., Lee, T., et al.: Advanced control architectures for intelligent microgrids—part I: decentralized and hierarchical control. IEEE Trans. Ind. Electron. 60(4), 1254–1262 (2013)

    Article  Google Scholar 

  5. Wu, X., Shen, C.: Distributed optimal control for stability enhancement of microgrids with multiple distributed generators. IEEE Trans. Power Syst. 32(5), 4045–4059 (2017)

    Article  Google Scholar 

  6. Bidram, A., Davoudi, A., Lewis, F.L., et al.: Secondary control of microgrids based on distributed cooperative control of multi-agent systems. IET Gener. Transm. Distrib. 7(8), 822–831 (2013)

    Article  Google Scholar 

  7. Simpson-Porco, J.W., Shafiee, Q., Dörfler, F., et al.: Secondary frequency and voltage control of islanded microgrids via distributed averaging. IEEE Trans. Ind. Electron. 62(11), 7025–7038 (2015)

    Article  Google Scholar 

  8. Lai, J., Zhou, H., Lu, X., et al.: Droop-based distributed cooperative control for microgrids with time-varying delays. IEEE Trans. Smart Grid 7(4), 1775–1789 (2016)

    Article  Google Scholar 

  9. Cai, H., Hu, G., Lewis, F.L., et al.: A distributed feedforward approach to cooperative control of AC microgrids. IEEE Trans. Power Syst. 31(5), 4057–4067 (2016)

    Article  Google Scholar 

  10. Wu, X., Shen, C., Iravani, R.: A distributed, cooperative frequency and voltage control for microgrids. IEEE Trans. Smart Grid 9(4), 2764–2776 (2018)

    Article  Google Scholar 

  11. Lu, X., Yu, X., Lai, J., et al.: A novel distributed secondary coordination control approach for islanded microgrids. IEEE Trans. Smart Grid 9(4), 2726–2740 (2018)

    Article  Google Scholar 

  12. Guo, F.H., Wen, C.Y., Mao, J.F., et al.: Distributed secondary voltage and frequency restoration control of droop-controlled inverterbased microgrids. IEEE Trans. Ind. Electron. 62(7), 4355–4364 (2015)

    Article  Google Scholar 

  13. Bidram, A., Davoudi, A., Lewis, F.L., et al.: Distributed cooperative secondary control of microgrids using feedback linearization. IEEE Trans. Power Syst. 28(3), 3462–3470 (2013)

    Article  Google Scholar 

  14. Sun, Q., Han, R., Zhang, H., et al.: A multiagent-based consensus algorithm for distributed coordinated control of distributed generators in the energy internet. IEEE Trans. Smart Grid 6(6), 3006–3019 (2015)

    Article  Google Scholar 

  15. Brabandere, K.D., Bolsens, B., Keybus, J.V., et al.: A voltage and frequency droop control method for parallel inverters. IEEE Trans. Power Electron. 22(4), 1107–1115 (2007)

    Article  Google Scholar 

  16. Xu, Y., Sun, H.: Distributed finite-time convergence control of an islanded low-voltage AC microgrid. IEEE Trans. Power Syst. 33(3), 2339–2348 (2018)

    Article  MathSciNet  Google Scholar 

  17. Dehkordi, N.M., Sadati, N., Hamzeh, M.: Distributed robust finite-time secondary voltage and frequency control of islanded microgrids. IEEE Trans. Power Syst. 32(5), 3648–3659 (2017)

    Article  Google Scholar 

  18. Pilloni, A., Pisano, A., Usai, E.: Robust finite time frequency and voltage restoration of inverter-based microgrids via sliding mode cooperative control. IEEE Trans. Ind. Electron. 65(1), 907–917 (2018)

    Article  Google Scholar 

  19. Kim, Y.S., Kim, E.S., Moon, S.I.: Distributed generation control method for active power sharing and self-frequency recovery in an islanded microgrid. IEEE Trans. Power Syst. 32(1), 544–551 (2017)

    Article  Google Scholar 

  20. Liu, J., Liu, Z., Chen, Z.: Coordinative control of multi-agent systems using distributed nonlinear output regulation. Nonlinear Dyn. 67(3), 1871–1881 (2012)

    Article  MathSciNet  Google Scholar 

  21. Shahvali, M., Shojaei, K.: Distributed control of networked uncertain Euler–Lagrange systems in the presence of stochastic disturbances: a prescribed performance approach. Nonlinear Dyn. 90(1), 697–715 (2017)

    Article  MathSciNet  Google Scholar 

  22. Li, L., Tu, Z., Mei, J., et al.: Finite-time synchronization of complex delayed networks via intermittent control with multiple switched periods. Nonlinear Dyn. 85(1), 375–388 (2016)

    Article  MathSciNet  Google Scholar 

  23. Aniszewska, D., Rybaczuk, M.: Lyapunov type stability and Lyapunov exponent for exemplary multiplicative dynamical systems. Nonlinear Dyn. 54(4), 345–354 (2008)

    Article  MathSciNet  Google Scholar 

  24. Nayfeh, M.A., Hamdan, A.M.A., Nayfeh, A.H.: Chaos and instability in a power system—primary resonant case. Nonlinear Dyn. 1(4), 313–339 (1990)

    Article  Google Scholar 

  25. Schiffer, J., Fridman, E., Ortega, R., et al.: Stability of a class of delayed port-Hamiltonian systems with application to microgrids with distributed rotational and electronic generation. Automatica 74, 71–79 (2016)

    Article  MathSciNet  Google Scholar 

  26. Simpson-Porco, J.W., Dörfler, F., Bullo, F.: Voltage stabilization in microgrids via quadratic droop control. IEEE Trans. Autom. Control 62(3), 1239–1253 (2017)

    Article  MathSciNet  Google Scholar 

  27. Aguirre, L., Freitas, L.: Control and observability aspects of phase synchronization. Nonlinear Dyn. 91, 2203–2217 (2018)

    Article  Google Scholar 

  28. Wang, B., Ding, J., Wu, F., et al.: Robust finite-time control of fractional-order nonlinear systems via frequency distributed model. Nonlinear Dyn. 85(4), 2133–2142 (2016)

    Article  MathSciNet  Google Scholar 

  29. Majumder, R.: Some aspects of stability in microgrids. IEEE Trans. Power Syst. 28(3), 3243–3252 (2013)

    Article  Google Scholar 

  30. Zhao, S., Loparo, K.A.: Forward and Backward Extended Prony (FBEP) Method for Power System Small-Signal Stability Analysis. IEEE Trans. Power Syst. 32(5), 3618–3626 (2017)

    Article  Google Scholar 

  31. Han, Y., Zhang, K., Li, H., et al.: MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview. IEEE Trans. Power Electron. 33(8), 6488–6508 (2018)

    Article  Google Scholar 

  32. Luo, S., Li, S., Tajaddodianfar, F., et al.: Observer-based adaptive stabilization of the fractional-order chaotic MEMS resonator. Nonlinear Dyn. 92, 1079–1089 (2018)

    Article  Google Scholar 

  33. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    Article  MathSciNet  Google Scholar 

  34. Zuo, Z., Tie, L.: Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 47(6), 1366–1375 (2016)

    Article  MathSciNet  Google Scholar 

  35. Danskin, J.M.: The theory of max–min, with applications. SIAM J. Appl. Math. 14, 641–664 (1966)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (61673077) and the Graduate Research and Innovation Foundation of Chongqing (CYB18063).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Guo, Z. Observer-based distributed control and synchronization analysis of inverter-based nonlinear power systems. Nonlinear Dyn 99, 2161–2183 (2020). https://doi.org/10.1007/s11071-019-05393-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05393-9

Keywords

Navigation