Skip to main content
Log in

Remote synchronization in human cerebral cortex network with identical oscillators

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Remote synchronization (RS) has recently received an increasing interest in the systems of nonidentical oscillators, but little attention has been paid to the systems of identical oscillators such as the case of human cerebral cortex where RS takes a key role in the functions of brain. Based on the real network of human cerebral cortex, we here show that RS can be also observed in the systems of identical oscillators, provided that appropriate time delay is considered. We interestingly find that RS may appear in different local places of cerebral cortex and thus results in a diversity of patterns, i.e., a new framework of multiple starlike graphs connected by common leaf nodes. To understand its mechanism, we present a model of two starlike graphs connected by common leaf nodes. We further show that the common leaf nodes take a key role for the emergence of RS in the new framework. A theoretical analysis is given. These findings may be helpful to understand the segregation and integration processes of information transmission in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ito, T., Kulkarni, K.R., Schultz, D.H., Mill, R.D., Chen, R.H., Solomyak, L.I., Cole, M.W.: Cognitive task information is transferred between brain regions via resting-state network topology. Nat. Commun. 8, 1027 (2017)

    Google Scholar 

  2. Del Ferraro, G., Moreno, A., Min, B., Morone, F., Perez-Ramirez, U., Perez-Cervera, L., Parra, L.C., Holodny, A., Canals, S., Makse, H.A.: Finding influential nodes for integration in brain networks using optimal percolation theory. Nat. Commun. 9, 2274 (2018)

    Google Scholar 

  3. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6, 1479 (2008)

    Google Scholar 

  4. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569 (2017)

    MathSciNet  Google Scholar 

  5. Jia, Y., Gu, H.: Identifying nonlinear dynamics of brain functional networks of patients with schizophrenia by sample entropy. Nonlinear Dyn. 96, 2327 (2019)

    Google Scholar 

  6. Liu, Z., Wang, C., Jin, W., Ma, J.: Capacitor coupling induces synchronization between neural circuits. Nonlinear Dyn. 97, 2661 (2019)

    Google Scholar 

  7. Ozer, M., Uzuntarla, M., Agaoglu, S.N.: Effect of the sub-threshold periodic current forcing on the regularity and the synchronization of neuronal spiking activity. Phys. Lett. A 360, 135 (2006)

    Google Scholar 

  8. Uzuntarla, M., Torres, J.J., Calim, A., Barreto, E.: Synchronization-induced spike termination in networks of bistable neurons. Neural Netw. 110, 131 (2019)

    Google Scholar 

  9. Sporns, O.: Network attributes for segregation and integration in the human brain. Curr. Opin. Neurobiol. 23, 162 (2013)

    Google Scholar 

  10. Park, H.J., Friston, K.: Structural and functional brain networks: from connections to cognition. Science 342, 6158 (2013)

    Google Scholar 

  11. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186 (2009)

    Google Scholar 

  12. Sporns, O.: Contributions and challenges for network models in cognitive neuroscience. Nat. Neurosci. 17, 652 (2014)

    Google Scholar 

  13. Hipp, J.F., Engel, A.K., Siegel, M.: Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69, 387 (2011)

    Google Scholar 

  14. Roelfsema, P.R., Engel, A.K., Konig, P., Singer, W.: Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157 (1997)

    Google Scholar 

  15. Vogels, T.P., Abbott, L.F.: Signal propagation and logic gating in networks of integrate-and-fire neurons. Neuroscience 25, 10786 (2005)

    Google Scholar 

  16. Diesmann, M., Gewaltig, M.O., Aertsen, A.: Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529 (1999)

    Google Scholar 

  17. Singer, W.: Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49 (1999)

    Google Scholar 

  18. Womelsdorf, T., Schoffelen, J.M., Oostenveld, R., Singer, W., Desimone, R., Engel, A.K., Fries, P.: Modulation of neuronal interactions through neuronal synchronization. Science 316, 1609 (2007)

    Google Scholar 

  19. Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93 (2008)

    MathSciNet  Google Scholar 

  20. van Vreeswijk, C.: Partial synchronization in populations of pulse-coupled oscillators. Phys. Rev. E 54, 5522 (1996)

    Google Scholar 

  21. Bansal, K., Garcia, J.O., Tompson, S.H., Verstynen, T., Vettel, J.M., Muldoon, S.F.: Cognitive chimera states in human brain networks. Sci. Adv. 5, eaau8535 (2019)

    Google Scholar 

  22. Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004)

    Google Scholar 

  23. Abrams, D.M., Mirollo, R., Strogatz, S.H., Wiley, D.A.: Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett. 101, 084103 (2008)

    Google Scholar 

  24. Tian, C., Cao, L., Bi, H., Xu, K., Liu, Z.: Chimera states in neuronal networks with time delay and electromagnetic induction. Nonlinear Dyn. 93, 1695 (2018)

    Google Scholar 

  25. Huo, S., Tian, C., Kang, L., Liu, Z.: Chimera states of neuron networks with adaptive coupling. Nonlinear Dyn. 96, 75 (2019)

    Google Scholar 

  26. Calim, A., Hovel, P., Ozer, M., Uzuntarla, M.: Chimera states in networks of type-I Morris–Lecar neurons. Phys. Rev. E 98, 062217 (2018)

    MathSciNet  Google Scholar 

  27. Rattenborg, N.C., Amlaner, C.J., Lima, S.L.: Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci. Biobehav. Rev. 24, 817 (2000)

    Google Scholar 

  28. Mathews, C.G., Lesku, J.A., Lima, S.L., Amlaner, C.J.: Asynchronous eye closure as an anti-predator behavior in the western fence lizard (Sceloporus occidentalis. Ethology 112, 286 (2006)

    Google Scholar 

  29. Pikovsky, A., Rosenblum, M.: Partially integrable dynamics of hierarchical populations of coupled oscillators. Phys. Rev. Lett. 101, 264103 (2008)

    Google Scholar 

  30. Ma, R., Wang, J., Liu, Z.: Robust features of chimera states and the implementation of alternating chimera states. Europhys. Lett. 91, 40006 (2010)

    Google Scholar 

  31. Tamaki, M., Bang, J.W., Watanabe, T., Sasaki, Y.: Night watch in one brain hemisphere during sleep associated with the first-night effect in humans. Curr. Biol. 26, 1190 (2016)

    Google Scholar 

  32. Schaub, M.T., O’Clery, N., Billeh, Y.N., Delvenne, J.C., Lambiotte, R., Barahona, M.: Graph partitions and cluster synchronization in networks of oscillators. Chaos 26, 094821 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Cao, B., Wang, Y.F., Wang, L., Yu, Y.Z., Wang, X.G.: Cluster synchronization in complex network of coupled chaotic circuits: an experimental study. Front. Phys. 13, 130505 (2018)

    Google Scholar 

  34. Sorrentino, F., Pecora, L.M., Hagerstrom, A.M., Murphy, T.E., Roy, R.: Complete characterization of the stability of cluster synchronization in complex dynamical networks. Sci. Adv. 2, e1501737 (2016)

    Google Scholar 

  35. Pecora, L.M., Sorrentino, F., Hagerstrom, A.M., Murphy, T.E., Roy, R.: Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5, 4079 (2014)

    Google Scholar 

  36. Siddique, A.B., Pecora, L., Hart, J.D., Sorrentino, F.: Symmetry-and input-cluster synchronization in networks. Phys. Rev. E 97, 042217 (2018)

    Google Scholar 

  37. Williams, C.R., Murphy, T.E., Roy, R., Sorrentino, F., Dahms, T., Schöll, E.: Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators. Phys. Rev. Lett. 110, 064104 (2013)

    Google Scholar 

  38. Bergner, A., Frasca, M., Sciuto, G., Buscarino, A., Ngamga, E.J., Fortuna, L., Kurths, J.: Remote synchronization in star networks. Phys. Rev. E 85, 026208 (2012)

    Google Scholar 

  39. Minati, L.: Remote synchronization of amplitudes across an experimental ring of non-linear oscillators. Chaos 25, 123107 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Hart, J.D., Bansal, K., Murphy, T.E., Roy, R.: Experimental observation of chimera and cluster states in a minimal globally coupled network. Chaos 26, 094801 (2016)

    MathSciNet  Google Scholar 

  41. Cho, Y.S., Nishikawa, T., Motter, A.E.: Stable chimeras and independently synchronizable clusters. Phys. Rev. Lett. 119, 084101 (2017)

    Google Scholar 

  42. Schmidt, L., Krischer, K.: Clustering as a prerequisite for chimera states in globally coupled systems. Phys. Rev. Lett. 114, 034101 (2015)

    Google Scholar 

  43. Majhi, S., Perc, M., Ghosh, D.: Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos 27, 073109 (2017)

    MathSciNet  Google Scholar 

  44. Bassett, D.S., Bullmore, E.D.: Small-world brain networks. Neuroscientist 12, 512 (2006)

    Google Scholar 

  45. Perl, E.R.: The Thalamus. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  46. Viriyopase, A., Bojak, I., Zeitler, M., Gielen, S.: When long-range zero-lag synchronization is feasible in cortical networks. Front. Comput. Neurosci. 6, 49 (2012)

    Google Scholar 

  47. Fischer, I., Vicente, R., Buldu, J.M., Peil, M., Mirasso, C.R., Torrent, M.C., Garcia-Ojalvo, J.: Zero-lag long-range synchronization via dynamical relaying. Phys. Rev. Lett. 97, 123901 (2006)

    Google Scholar 

  48. Vicente, R., Gollo, L.L., Mirasso, C.R., Fischer, I., Pipa, G.: Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proc. Natl. Acad. Sci. USA 105, 17157 (2008)

    Google Scholar 

  49. Sherman, S.M., Guillery, R.W.: Exploring the Thalamus and Its Role in Cortical Function. Academic Press, Cambridge, MA (2006)

    Google Scholar 

  50. Lagier, S., Carleton, A., Lledo, P.M.: Interplay between local GABAergic interneurons and relay neurons generates \(\gamma \) oscillations in the rat olfactory bulb. J. Neurosci. 24, 4382 (2004)

    Google Scholar 

  51. Seki, K., Perlmutter, S.I., Fetz, E.E.: Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat. Neurosci. 6, 1309 (2003)

    Google Scholar 

  52. Vlasov, V., Bifone, A.: Hub-driven remote synchronization in brain networks. Sci. Rep. 7, 10403 (2017)

    Google Scholar 

  53. Gambuzza, L.V., Cardillo, A., Fiasconaro, A., Fortuna, L., Gomez-Gardenes, J., Frasca, M.: Analysis of remote synchronization in complex networks. Chaos 23, 043103 (2013)

    MATH  Google Scholar 

  54. Gambuzza, L.V., Frasca, M., Fortuna, L., Boccaletti, S.: Inhomogeneity induces relay synchronization in complex networks. Phys. Rev. E 93, 042203 (2016)

    Google Scholar 

  55. Nicosia, V., Valencia, M., Chavez, M., Diaz-Guilera, A., Latora, V.: Remote synchronization reveals network symmetries and functional modules. Phys. Rev. Lett. 110, 174102 (2013)

    Google Scholar 

  56. Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., Thiran, J.P.: Mapping human whole-brain structural networks with diffusion MRI. PLoS ONE 2, e597 (2007)

    Google Scholar 

  57. Iturria-Medina, Y., Sotero, R.C., Canales-Rodriguez, E.J., Aleman-Gomez, Y., Melie-Garcia, L.: Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. Neuroimage 40, 1064 (2007)

    Google Scholar 

  58. Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA 106, 2035 (2009)

    Google Scholar 

  59. Aguirre, G.K., Zarahn, E., D’esposito, M.: The inferential impact of global signal covariates in functional neuroimaging analyses. Neuroimage 8, 302 (1998)

    Google Scholar 

  60. Izhikevich, E.M.: Polychronization: computation with spikes. Neural Comput. 18, 245 (2006)

    MathSciNet  MATH  Google Scholar 

  61. Adhikari, B.M., Prasad, A., Dhamala, M.: Time-delay-induced phase-transition to synchrony in coupled bursting neurons. Chaos 21, 023116 (2011)

    MathSciNet  Google Scholar 

  62. Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92, 074104 (2004)

    Google Scholar 

  63. Wendling, F., Bellanger, J.J., Bartolomei, F., Chauvel, P.: Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol. Cybern. 83, 367 (2000)

    Google Scholar 

  64. Zhou, C., Zemanova, L., Zamora-Lopez, G., Hilgetag, C.C., Kurths, J.: Structure function relationship in complex brain networks expressed by hierarchical synchronization. New J. Phys. 9, 178 (2007)

    Google Scholar 

  65. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J. 12, 1 (1972)

    Google Scholar 

  66. Daffertshofer, A., van Wijk, B.C.M.: On the influence of amplitude on the connectivity between phases. Front Neuroinform. 5, 8 (2011)

    Google Scholar 

  67. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks, 1st edn. Springer, New York (1997)

    MATH  Google Scholar 

  68. Sherman, A., Rinzel, J.: Rhythmogenic effects of weak electrotonic coupling in neuronal models. Proc. Natl. Acad. Sci. USA 89, 2471 (1992)

    Google Scholar 

  69. Steyn-Ross, D.A., Steyn-Ross, M., Freeman, W. (eds.): Modeling Phase Transitions in the Brain, 1st edn. Springer, New York (2010)

    MATH  Google Scholar 

  70. Moon, J., Lee, U., Blain-Moraes, S., Mashour, G.A.: General relationship of global topology, local dynamics, and directionality in large-scale brain networks. PLOS Comput. Biol. 11, e1004225 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the NNSF of China under Grant Nos. 11675056 and 11835003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, L., Wang, Z., Huo, S. et al. Remote synchronization in human cerebral cortex network with identical oscillators. Nonlinear Dyn 99, 1577–1586 (2020). https://doi.org/10.1007/s11071-019-05375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05375-x

Keywords

Navigation