Skip to main content

Advertisement

Log in

On the efficacy of charging a battery using a chaotic energy harvester

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Introduction of stiffness nonlinearities to broaden the frequency bandwidth of vibratory energy harvesters has the adverse influence of complicating the response behavior of the harvester. As such, unlike linear energy harvesters, for which direct performance metrics can be easily developed, it is not always easy to develop metrics to assess the performance of nonlinear energy harvesters. One particular issue arises when the harvester operates in its chaotic regime resulting in an unpredictable response, under which the harvester’s performance is hard to assess. In this paper, we present a statistical technique to estimate the charging time of a battery being charged by a chaotic vibratory input. The proposed approach, which accounts for the presence of a rectifier circuit, a buck converter, and the dependence of the battery voltage on the state of charge, only requires the knowledge of the probability density function of the open-circuit voltage of the harvester. Using the proposed technique, it is also possible to obtain the optimal duty cycle of the buck converter. Results of the proposed methodology were compared to numerical data generated using MATLAB’s Simscape toolbox demonstrating excellent agreement. Not only does the proposed technique provide a valuable tool to assess performance of a chaotic energy harvester, but it can also be easily applied to other chaotic and random energy sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wu, W., Chen, Y., Lee, B., He, J., Peng, Y.: Tunable resonant frequency power harvesting devices. In: Proceedings of Smart Structures and Materials Conference, SPIE, p. 61690A. San Diego, CA (2006)

  2. Challa, V., Prasad, M., Shi, Y., Fisher, F.: A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater. Struct. 75, 1–10 (2008)

    Google Scholar 

  3. Shahruz, S.M.: Design of mechanical band-pass filters for energy scavenging. J. Sound Vib. 292, 987–998 (2006)

    Article  Google Scholar 

  4. Shahruz, S.M.: Limits of performance of mechanical band-pass filters used in energy harvesting. J. Sound Vib. 294, 449–461 (2006)

    Article  Google Scholar 

  5. Baker, J., Roundy, S., Wright, P.: Alternative geometries for increasing power density in vibration energy scavenging for wireless sensors. In: Proceedings of the Third International Energy Conversion Conference, pp. 959–970. San Francisco, CA (2005)

  6. Rastegar, J., Pereira, C., Nguyen, H.L.: Piezoelectric-based power sources for harvesting energy from platforms with low frequency vibrations. In: Proceedings of Smart Structures and Materials Conference, SPIE, pp. 617101. San Diego, CA (2006)

  7. Jung, J.H., Lee, M., Hong, J.-I., Ding, Y., Chen, C.-Y., Chou, L.-J., Wang, Z.L.: Lead-free \({\text{ NaNbO }}_3\) nanowires for a high output piezoelectric nanogenerator. ACS Nano 5, 10041–10046 (2011)

    Article  Google Scholar 

  8. Saito, Y., Takao, H.: High performance lead-free piezoelectric ceramics in the (K, Na)\({\text{ NbO }}_3\)-\({\text{ LiTaO }}_3\) solid solution system. Ferroelectrics 338, 17–32 (2006)

    Article  Google Scholar 

  9. Ottman, G.K., Hofmann, H.F., Lesieutre, G.A.: Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Trans. Power Electron. 18, 696–703 (2003)

    Article  Google Scholar 

  10. Ramadass, Y.K., Chandrakasan, A.P.: An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J. Solid-State Circuits 45, 189–204 (2010)

    Article  Google Scholar 

  11. Makihara, K., Onoda, J., Miyakawa, T.: Low energy dissipation electric circuit for energy harvesting. Smart Mater. Struct. 15, 1493–1498 (2006)

    Article  Google Scholar 

  12. Gammaitoni, L., Neri, I., Vocca, H.: Nonlinear oscillators for vibration energy harvesting. Appl. Phys. Lett. 94(16), 164102 (2009)

    Article  Google Scholar 

  13. Daqaq, M.F.: Response of uni-modal duffing type harvesters to random forced excitations. J. Sound Vib. 329, 3621–3631 (2010)

    Article  Google Scholar 

  14. Daqaq, M.F.: Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330, 2554–2564 (2011)

    Article  Google Scholar 

  15. Nguyen, D.S., Halvorsen, E., Jensen, G.U., Vogl, A.: Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs. J Micromech. Microeng. 20(12), 125009 (2010)

    Article  Google Scholar 

  16. Halvorsen, E.: Fundamental Issues in nonlinear wide-band vibration energy harvesting. Phys. Rev. E 87, 042129 (2013)

    Article  Google Scholar 

  17. Green, P.L., Worden, K., Atalla, K., Sims, N.D.: The benefits of duffing-type nonlinearities and electrical optimisation of a mono-stable energy harvester under white Gaussian excitations. J Sound Vib. 331(20), 4504–4517 (2012)

    Article  Google Scholar 

  18. Zhao, S., Erturk, A.: On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. J. Appl. Phys. 102, 103902 (2013)

    Google Scholar 

  19. He, Q., Daqaq, M.F.: Load optimization of a nonlinear mono-stable duffing-type harvester operating in a white noise environment. In: Proceedings of the ASME: International Design Engineering Technical Conference and Computers and Information in Engineering Conference, IDETC/CIE 2013, p. 2013. Portland, OR (2013)

  20. Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn. 69(3), 1063–1079 (2011)

    Article  MathSciNet  Google Scholar 

  21. Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 040801 (2014)

    Article  Google Scholar 

  22. Burrow, S.G., Clare, L.R.: A resonant generator with non-linear compliance for energy harvesting in high vibrational environments. In: 2007 IEEE International Electric Machines Drives Conference, IEMDC ’07, vol. 1, pp. 715 –720 (2007)

  23. Barton, D.A.W., Burrow, S.G., Clare, L.R.: Energy harvesting from vibrations with a nonlinear oscillator. ASME J. Vib. Acoust. 132(2), 021009 (2010)

    Article  Google Scholar 

  24. Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys. D Nonlinear Phenom. 239, 640–653 (2010)

    Article  Google Scholar 

  25. Sebald, G., Kuwano, H., Guyomar, D., Ducharne, B.: Experimental duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20(10), 102001 (2011)

    Article  Google Scholar 

  26. Harne, R.L., Thota, M., Wang, K.W.: Concise and high-fidelity predictive criteria for maximizing performance and robustness of bistable energy harvesters. Appl. Phys. Lett. 102, 053903 (2013)

    Article  Google Scholar 

  27. Masana, R., Daqaq, M.F.: Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J. Sound Vib. 330(24), 6036–6052 (2009)

    Article  Google Scholar 

  28. Masana, R., Daqaq, M.F.: Energy harvesting in the super-harmonic frequency region of a twin-well oscillator. J. Appl. Phys. 111(4), 044501 (2012)

    Article  Google Scholar 

  29. Joo, H.K., Sapsis, T.P.: Performance measures for single-degree-of-freedom energy harvesters under stochastic excitation. J. Sound Vib. 33, 4695–4710 (2014)

    Article  Google Scholar 

  30. Halvorsen, E.: Fundamental issues in nonlinear wideband-vibration energy harvesting. Phys. Rev. E 87, 042129 (2013)

    Article  Google Scholar 

  31. Langley, R.S.: A general mass law for broadband energy harvesting. J. Sound Vib. 333, 927–936 (2014)

    Article  Google Scholar 

  32. Langley, R.S.: Bounds on the vibrational energy that can be harvested from random base motion. J. Sound Vib. 339, 247–261 (2015)

    Article  Google Scholar 

  33. Petromichelakis, I., Psaros, A.S., Kougioumtzoglou, I.A.: Stochastic response determination and optimization of a class of nonlinear electromechanical energy harvesters: a Wiener path integral approach. Probab. Eng. Mech. 53, 116–125 (2018)

    Article  Google Scholar 

  34. Lund Instrument Engineering, Inc. PowerStream lithium polymer battery catalog. https://www.powerstream.com/li-pol.htm. Accessed 5 Dec 2018

  35. Nayfeh, A.H.: Nonlinear Dynamics. Wiley, New Jersey (1995)

    MATH  Google Scholar 

  36. Anishchenko, V.S., Vadivasova, T.E., Strelkova, G.I., Okrokvertskhov, G.A.: Statistical properties of dynamical chaos. Math. Biosci. Eng. 1, 161–184 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed F. Daqaq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daqaq, M.F., Crespo, R.S. & Ha, S. On the efficacy of charging a battery using a chaotic energy harvester. Nonlinear Dyn 99, 1525–1537 (2020). https://doi.org/10.1007/s11071-019-05372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05372-0

Keywords

Navigation