Skip to main content
Log in

Extended complexification method to study nonlinear passive control

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present research work aims to design a passive vibration control based on nonlinear energy pumping. An extended asymptotic approach is introduced based on the invariant manifold approach for the case of 1:1 resonance. It consists in introducing an extended form of Manevitch’s complex variables, taking into consideration higher harmonics, enabling the detection of the invariant manifold of the system at fast timescale. At the slow timescale, equilibrium points and singularities are identified analytically in order to predict periodic regimes and strongly modulated responses. The example of a passive shunt loudspeaker using a nonlinear absorber is studied. Unlike classical investigations, the first and third harmonics are taken into consideration. It is demonstrated that the presence of the third harmonic improves the approximations of the results. Different cases are considered, where the obtained analytical results are in good agreement with those obtained via direct numerical integration of the principal system of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F., Yao, J.T.P.: Structural control: past, present and future. J. Eng. Mech. 123, 897–971 (1997)

    Article  Google Scholar 

  2. Korkmaz, S.: A review of active structural control: challenges for engineering informatics. Comput. Struct. 89, 2113–2132 (2011)

    Article  Google Scholar 

  3. Mead, D.J.: Passive Vibration Control. Wiley, Chichester (1999)

    MATH  Google Scholar 

  4. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3), 371–452 (2008)

    Article  Google Scholar 

  5. Frahm, H.: Device for damping vibrations of bodies, U.S. Patent No. 989958 (1909)

  6. Helmholtz, H.V.: Die Lehre von den Tonempfindungen als physiologische Grundlagefur die Theorie der Musik. Druck und Verlag von Friedrich Vieweg und Sons, Brunswick (1863)

    MATH  Google Scholar 

  7. Nayfeh, A.H., Balachandran, B.: Modal interactions in dynamical and structural systems. Appl. Mech. Rev. 42(11S), S175–S201 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, Berlin (2011)

    Book  Google Scholar 

  9. Roberson, R.E.: Synthesis of a nonlinear dynamic vibration absorber. J. Frankl. Inst. 254, 205–220 (1952)

    Article  MathSciNet  Google Scholar 

  10. Gatti, G., Brennan, M.J.: On the effects of system parameters on the response of a harmonically excited system consisting of weakly coupled nonlinear and linear oscillators. J. Sound Vib. 330(18), 4538–4550 (2011)

    Article  Google Scholar 

  11. Sevin, E.: On the parametric excitation of pendulum-type vibration absorber. J. Appl. Mech. 28(3), 330–334 (1961)

    Article  MATH  Google Scholar 

  12. Haxton, R.S., Barr, A.D.S.: The autoparametric vibration absorber. J. Eng. Ind. 94(1), 119–125 (1972)

    Article  Google Scholar 

  13. Hunt, J.B., Nissen, J.-C.: The broadband dynamic vibration absorber. J. Sound Vib. 83(4), 573–578 (1982)

    Article  Google Scholar 

  14. Ema, S., Marui, E.: Damping characteristics of an impact damper and its application. Int. J. Mach. Tools Manuf. 36(3), 293–306 (1996)

    Article  Google Scholar 

  15. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Solid Mechanics and Its Applications. Springer, Dordrecht (2008)

    MATH  Google Scholar 

  16. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123(3), 324–332 (2001)

    Article  Google Scholar 

  17. Gendelman, O., Manevitch, L.I., Vakakis, A.F., M’Closkey, R.: Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68(1), 34–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Enhancing robustness of instability suppression by means of multi-degree-of-freedom nonlinear energy sinks. AIAA J. 46(18), 1371–1394 (2008)

    Article  Google Scholar 

  19. Wierschem, N.E., Hubbard, S.A., Luo, J., Fahnestock, L.A., Spencer Jr., B.F., McFarland, M.D., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers. J. Sound Vib. 389, 52–72 (2017)

    Article  Google Scholar 

  20. Weiss, M., Vaurigaud, B., Ture Savadkoohi, A., Lamarque, C.-H.: Control of vertical oscillations of a cable by a piecewise linear absorber. J. Sound Vib. 435, 281–300 (2018)

    Article  Google Scholar 

  21. Cochelin, B., Herzog, P., Mattei, P.-O.: Experimental evidence of energy pumping in acoustics. C. R. Méc. 334(11), 639–644 (2006)

    Article  Google Scholar 

  22. Manevitch, L.I.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25(1), 95–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gendelman, O.V.: Targeted energy transfer in systems with non-polynomial nonlinearity. J. Sound Vib. 315(3), 732–745 (2008)

    Article  Google Scholar 

  24. Ture Savadkoohi, A., Lamarque, C.-H., Dimitrijevic, Z.: Vibratory energy exchange between a linear and a nonsmooth system in the presence of the gravity. Nonlinear Dyn. 70(2), 1473–1483 (2012)

    Article  MathSciNet  Google Scholar 

  25. Weiss, M., Chenia, M., Ture Savadkoohi, A., Lamarque, C.-H., Vaurigaud, B., Hammouda, A.: Multi-scale energy exchanges between an elasto-plastic oscillator and a light nonsmooth system with external pre-stress. Nonlinear Dyn. 83(1), 109–135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lamarque, C.-H., Ture Savadkoohi, A., Charlemagne, S., Abdoulhadi, P.: Nonlinear vibratory interactions between a linear and a nonsmooth forced oscillator in the gravitational field. Mech. Syst. Signal Process. 89, 131–148 (2017)

    Article  Google Scholar 

  27. Bitar, D., Ture Savadkoohi, A., Lamarque, C.-H., Gourdon, E., Collet, M.: Targeted nonlinear energy transfer for electroacoustic absorbers. In: Lenci, S., Kovacic, I. (eds.) IUTAM symposium on exploiting nonlinear dynamics for engineering systems. Springer (2019)

  28. Bitar, D., Gourdon, E., Lamarque, C.-H., Collet, M.: Shunt loudspeaker using nonlinear energy sink. J. Sound Vib. 456, 254–271 (2019)

    Article  Google Scholar 

  29. Lamarque, C.-H., Gendelman, O.V., Ture Savadkoohi, A., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech. 221(1), 175 (2011)

    Article  MATH  Google Scholar 

  30. Gendelman, O.V.: Targeted energy transfer in systems with external and self-excitation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225(9), 2007–2043 (2011)

    Article  Google Scholar 

  31. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley Classics Library. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  32. Kevorkian, J., Cole, J.D.: The Method of Multiple Scales for Ordinary Differential Equations, pp. 267–409. Springer, New York (1996)

    Google Scholar 

  33. Verhulst, F.: Singular perturbation methods for slow–fast dynamics. Nonlinear Dyn. 50(4), 747–753 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Cesari, Lamberto: Functional analysis and Galerkin’s method. Mich. Math. J. 11(4), 385–414 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  35. Urabe, M.: Galerkin’s procedure for nonlinear periodic systems. Arch. Ration. Mech. Anal. 20(2), 120–152 (1965)

    Article  MATH  Google Scholar 

  36. Ture Savadkoohi, A., Lamarque, C.-H., Contessa, M.V.: Trapping vibratory energy of main linear structures by coupling light systems with geometrical and material non-linearities. Int. J. Non Linear Mech. 80, 3–13 (2016). Dynamics, stability, and control of flexible structures

    Article  Google Scholar 

  37. Shampine, L., Reichelt, M.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry. Physica D Nonlinear Phenom. 237(13), 1719–1733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was conducted in the framework of the LABEX CELYA (ANR-10-LABX-0060) of the “Université de Lyon” within the program “Investissement d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ture Savadkoohi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bitar, D., Ture Savadkoohi, A., Lamarque, CH. et al. Extended complexification method to study nonlinear passive control. Nonlinear Dyn 99, 1433–1450 (2020). https://doi.org/10.1007/s11071-019-05365-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05365-z

Keywords

Navigation