Skip to main content
Log in

Collective sustained oscillations in excitable small-world networks: the moderate fundamental loop or the minimum Winfree loop?

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The problem of self-sustained oscillations in excitable complex networks is the central issue under investigation, among which the exploration of the key factors in determining collective oscillation and the realization of oscillation control are the challenging tasks. In this paper, we have extensively investigated the influence of the rewiring probability and the coupling strength on the oscillation period in excitable small-world networks (ESWNs) and exposed two determinants, i.e., the moderate fundamental loop (FL) and the minimum Winfree loop (MWL), which can effectively determine the oscillation period in ESWNs via different mechanisms. The moderate FL, which is created by the rewiring mechanism, can significantly influence the oscillation period in two ways. The first is to turn itself into the oscillation source, while the other is to behave as the competitor supervising the long oscillation source loop structure possessing the equivalent wavelength. The MWL, which is determined by the coupling strength, can profoundly affect the oscillation period by choosing the suitable FL to be the oscillation source at a given parameter setting. More importantly, corresponding to these two determinants, two control schemes that can effectively regulate the oscillation period in the ESWN have been proposed. We hope our results will shed light on a deeper understanding of the key factors in determining the oscillation period and the related period control in actual biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Freeman, W.J.: Mesoscopic neurodynamics: from neuron to brain. J. Physiol. Paris 94, 303 (2000)

    Google Scholar 

  2. Abarbanel, H.D.I., Rabinovich, M.I.: Neurodynamics: nonlinear dynamics and neurobiology. Curr. Opin. Neurobiol. 11, 423 (2001)

    Google Scholar 

  3. Ma, J., Jun, T.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569 (2017)

    MathSciNet  Google Scholar 

  4. Hodgkin, A., Huxley, A.F.: A quantitative description of membrane current and its applications to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  5. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193 (1981)

    Google Scholar 

  6. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296, 162 (1982)

    Google Scholar 

  7. Chay, T.R., Keizer, J.: Minimum model for membrane oscillations in the pancreatic beta-cell. Biophys. J. 42, 181 (1983)

    Google Scholar 

  8. Lau, P., Bi, G.: Synaptic mechanisms of persistent reverberatory activity in neuronal networks. PNAS 102, 10333 (2005)

    Google Scholar 

  9. Guo, D., Li, C.: Stochastic and coherence resonance in feed-forward-loop neuronal network motifs. Phys. Rev. E 79, 051921 (2009)

    Google Scholar 

  10. Ratte, S., Hong, S.G., De Schutter, E., Prescott, S.A.: Impact of neuronal properties on network coding: roles of spike initiation dynamics and robust synchrony transfer. Neuron 78, 758 (2013)

    Google Scholar 

  11. Esfahani, Z.G., Gollo, L.L., Valizadeh, A.: Stimulus-dependent synchronization in delayed-coupled neuronal networks. Sci. Rep. 6, 23471 (2016)

    Google Scholar 

  12. Lv, M., Ma, J., Yao, Y., Alzahrani, F.: Synchronization and wave propagation in neuronal network under field coupling. Sci. China Technol. Sci. 62, 448 (2019)

    Google Scholar 

  13. Başar, E., Başar-Eroǧlu, C., Karakaş, S., Schürmann, M.: Brain oscillations in perception and memory. Int. J. Psychophysiol. 35, 95 (2000)

    Google Scholar 

  14. Buzsáki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304, 1926 (2004)

    Google Scholar 

  15. Rulkov, N.F., Timofeev, I., Bazhenov, M.: Oscillations in large-scale cortical networks: map-based model. J. Comput. Neurosci. 17, 203 (2004)

    Google Scholar 

  16. Cole, S.R., Voytek, B.: Brain oscillations and the importance of waveform shape. Trends Cogn. Sci. 12, 137 (2017)

    Google Scholar 

  17. Maex, R., Schutter, E.D.: Mechanism of spontaneous and self-sustained oscillations in networks connected through axo-axonal gap junctions. Eur. J. Neurosci. 25, 3347 (2007)

    Google Scholar 

  18. Buzsáki, G., Silva, F.L.: High frequency oscillations in the intact brain. Prog. Neurobiol. 98, 241 (2012)

    Google Scholar 

  19. Neville, K.R., Haberly, L.B.: Beta and gamma oscillations in the olfactory system of the urethane-anesthetized rat. J. Neurophysiol. 90, 3921 (2003)

    Google Scholar 

  20. Bollimunta, A., Chen, Y., Schroeder, C.E., Ding, M.: Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques. J. Neurosci. 28, 9976 (2008)

    Google Scholar 

  21. Kay, L.M., Beshel, J.: A beta oscillation network in the rat olfactory system during a 2-alternative choice odor discrimination task. J. Neurophysiol. 104, 829 (2010)

    Google Scholar 

  22. Knyazev, G.G.: Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci. Biobehav. Rev. 31, 377 (2007)

    Google Scholar 

  23. Schroeder, C.E., Lakatos, P.: The gamma oscillation: master or slave? Brain Topogr. 22, 24 (2009)

    Google Scholar 

  24. Stefanics, G., Hangya, B., Hernádi, I., Winkler, I., Lakatos, P., Ulbert, I.: Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. J. Neurosci. 30, 13578 (2010)

    Google Scholar 

  25. Burke, J.F., Zaghloul, K.A., Jacobs, J., Williams, R.B., Sperling, M.R., Sharan, A.D., Kahana, M.J.: Synchronous and asynchronous theta and gamma activity during episodic memory formation. J. Neurosci. 33, 292 (2013)

    Google Scholar 

  26. Palva, S., Palva, J.M., Shtyrov, Y., Kujala, T., Ilmoniemi, R.J., Kaila, K., Näätänen, R.: Distinct gamma-band evoked responses to speech and non-speech sounds in humans. J. Neurosci. 22, RC211 (2002)

    Google Scholar 

  27. Kirk, I.J., Mackay, J.C.: The role of theta-range oscillations in synchronising and integrating activity in distributed mnemonic networks. Cortex 39, 993 (2003)

    Google Scholar 

  28. Light, G.A., Hsu, J.L., Hsieh, M.H., Meyer-Gomes, K., Sprock, J., Swerdlow, N.R.: Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol. Psychiatry 60, 1231 (2006)

    Google Scholar 

  29. Paik, S.-B., Kumar, T., Glaser, D.A.: Spontaneous local gamma oscillation selectively enhances neural network responsiveness. PLoS Comput. Biol. 5, e1000342 (2009)

    MathSciNet  Google Scholar 

  30. Foxe, J.J., Snyder, A.C.: The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front. Psychol. 2, 154 (2011)

    Google Scholar 

  31. Weiss, S., Mueller, H.M.: “Too many betas do not spoil the broth”: the role of beta brain oscillations in language processing. Front. Psychol. 3, 201 (2012)

    Google Scholar 

  32. Harmony, T.: The functional significance of delta oscillations in cognitive processing. Front. Integr. Neurosci. 7, 83 (2013)

    Google Scholar 

  33. Gomez-Marin, A., Garcia-Ojalvo, J., Sancho, J.M.: Self-sustained spatiotemporal oscillations induced by membrane-bulk coupling. Phys. Rev. Lett. 98, 168303 (2007)

    Google Scholar 

  34. Mi, Y., Zhang, L., Huang, X., Qian, Y., Hu, G., Liao, X.: Complex networks with large numbers of labelable attractors. Europhys. Lett. 95, 58001 (2011)

    Google Scholar 

  35. Kouvaris, N.E., Isele, T., Mikhailov, A.S., Schöll, E.: Propagation failure of excitation waves on trees and random networks. Europhys. Lett. 106, 68001 (2014)

    Google Scholar 

  36. Isele, T., Hartung, B., Hövel, P., Schöll, E.: Excitation waves on a minimal small-world model. Eur. Phys. J. B 88, 104 (2015)

    MathSciNet  Google Scholar 

  37. Kobayashi, Y., Kitahata, H., Nagayama, M.: Sustained dynamics of a weakly excitable system with nonlocal interactions. Phys. Rev. E 96, 022213 (2017)

    Google Scholar 

  38. McGraw, P., Menzinger, M.: Self-sustaining oscillations in complex networks of excitable elements. Phys. Rev. E 83, 037102 (2011)

    Google Scholar 

  39. Gu, W., Liao, X., Zhang, L., Huang, X., Hu, G., Mi, Y.: Synchronous firings in small-world networks of excitable nodes. Europhys. Lett. 102, 28001 (2013)

    Google Scholar 

  40. Isele, T., Schöll, E.: Effect of small-world topology on wave propagation on networks of excitable elements. New J. Phys. 17, 023058 (2015)

    MathSciNet  Google Scholar 

  41. Fretter, C., Lesne, A., Hilgetag, C.C., Hütt, M.T.: Topological determinants of self-sustained activity in a simple model of excitable dynamics on graphs. Sci. Rep. 7, 42340 (2017)

    Google Scholar 

  42. Roxin, A., Riecke, H., Solla, S.A.: Self-sustained activity in a small-world network of excitable neurons. Phys. Rev. Lett. 92, 198101 (2004)

    Google Scholar 

  43. Sinha, S., Saramäki, J., Kaski, K.: Emergence of self-sustained patterns in small-world excitable media. Phys. Rev. E 76, 015101(R) (2007)

    Google Scholar 

  44. Qian, Y., Huang, X., Hu, G., Liao, X.: Structure and control of self-sustained target waves in excitable small-world networks. Phys. Rev. E 81, 036101 (2010)

    Google Scholar 

  45. Liao, X., Xia, Q., Qian, Y., Zhang, L., Hu, G., Mi, Y.: Pattern formation in oscillatory complex networks consisting of excitable nodes. Phys. Rev. E 83, 056204 (2011)

    Google Scholar 

  46. Mi, Y., Liao, X., Huang, X., Zhang, L., Gu, W., Hu, G., Wu, S.: Long-period rhythmic synchronous firing in a scale-free network. Proc. Natl. Acad. Sci. USA 25, E4931 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Qian, Y.: Emergence of self-sustained oscillations in excitable Erdös-Rényi random networks. Phys. Rev. E 90, 032807 (2014)

    Google Scholar 

  48. Qian, Y., Cui, H., Zheng, Z.: Minimum Winfree loop determines self-sustained oscillations in excitable Erdös-Rényi random networks. Sci. Rep. 7, 5746 (2017)

    Google Scholar 

  49. Qian, Y., Zhang, G., Wang, Y., Yao, C., Zheng, Z.: Winfree loop sustained oscillation in two-dimensional excitable lattices: prediction and realization. Chaos 29, 073106 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Danison, J., Perez, M.: Complex self-sustained oscillation patterns in modular excitable networks. Phys. Rev. E 98, 042308 (2018)

    Google Scholar 

  51. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440 (1998)

    MATH  Google Scholar 

  52. Bär, M., Eiswirth, M.: Turbulence due to spiral breakup in a continuous excitable medium. Phys. Rev. E 48, R1635 (1993)

    Google Scholar 

  53. Winfree, A.T.: Varieties of spiral wave behavior: an experimentalists approach to the theory of excitable media. Chaos 1, 303 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11675001 and 11875135), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2019JM-045 and 2018JM6099), the Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 19JK0039), Quanzhou City Science & Technology Program of China (No. 2018C085R), and the Scientific Research Funds of Huaqiao University (Grant No. 15BS401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Zhang, C., Zhang, G. et al. Collective sustained oscillations in excitable small-world networks: the moderate fundamental loop or the minimum Winfree loop?. Nonlinear Dyn 99, 1415–1431 (2020). https://doi.org/10.1007/s11071-019-05362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05362-2

Keywords

Navigation