Skip to main content
Log in

Vibrational control of mechanical systems with piecewise linear damping and high-frequency inputs

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper discusses averaging and vibrational control of mechanical control-affine systems with piecewise linear damping and high-frequency inputs. The results are used for dynamic analysis and vibrational control of a three-degree-of-freedom, planar, horizontal pendulum. The system has non-symmetric, linear viscous damping, and the pivot point of the pendulum moves along a prescribed elliptical path with “high” frequency. The dynamic analysis shows that the presence of non-symmetric damping results in change of periodic orbits or equilibria of the system or instability of an otherwise stable system. This paper presents the stability conditions of the system in terms of the physical parameters of the pendulum and the prescribed path. Using the results of dynamic analysis, the paper also discusses vibrational control of the system of horizontal pendulum. The analysis can be extended to mechanical control systems with nonlinear viscous forces, dry friction, or inviscid flow forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bellman, R.E., Bentsman, J., Meerkov, S.M.: Vibrational control of nonlinear systems: vibrational stabilizability. IEEE Trans. Autom. Control AC–31(8), 710–716 (1986a)

    Article  MathSciNet  Google Scholar 

  2. Bellman, R.E., Bentsman, J., Meerkov, S.M.: Vibrational control of nonlinear systems: vibrational controllability and transient behavior. IEEE Trans. Autom. Control AC–31(8), 717–724 (1986b)

    Article  MathSciNet  Google Scholar 

  3. Bentsman, J.: Vibrational control of a class of nonlinear systems by nonlinear multiplicative vibrations. IEEE Trans. Autom. Control AC–32(8), 711–716 (1987)

    Article  MathSciNet  Google Scholar 

  4. Bentsman, J., Hong, K.S.: Vibrational stabilization of nonlinear parabolic systems with neumann boundary conditions. IEEE Trans. Autom. Control 36(4), 501–507 (1991)

    Article  MathSciNet  Google Scholar 

  5. Bentsman, J., Hong, K.S.: Transient behavior analysis of vibrationally controlled nonlinear parabolic systems with neumann boundary conditions. IEEE Trans. Autom. Control 38(10), 1603–1607 (1993)

    Article  MathSciNet  Google Scholar 

  6. Bentsman, J., Hong, K.S., Fakhfakh, J.: Vibrational control of nonlinear time lag systems: vibrational stabilization and transient behavior. Automatica 27(3), 491–500 (1991)

    Article  MathSciNet  Google Scholar 

  7. Berg, J.M., Wickramasinghe, I.P.M.: Vibrational control without averaging. Automatica 58, 72–81 (2015)

    Article  MathSciNet  Google Scholar 

  8. Blekhman, I.I.: Vibrational Mechanics. World Scientific Publishing Co., Singapore (2000)

    Book  Google Scholar 

  9. Bogoliubov, N.N., Mitropolsky, Y.A.: Asymtotic Methods in the Theory of Non-linear Oscillations. Hindustan Publishing Corporation, Delhi (1961)

    Google Scholar 

  10. Bullo, F.: Averaging and vibrational control of mechanical systems. SIAM J. Control Optim. 41(2), 542–562 (2002)

    Article  MathSciNet  Google Scholar 

  11. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Texts in Applied Mathematics. Springer, New York, NY (2005)

    Book  Google Scholar 

  12. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems. Applied Mathematical Sciences. Springer, London (2008)

    MATH  Google Scholar 

  13. Fidlin, A.: Nonlinear Oscillations in Mechanical Engineering. Springer, Heidelberg (2006)

    Google Scholar 

  14. Fidlin, A., Thomsen, J.J.: Nontrivial effects of high-frequency excitation for strongly damped mechanical systems. Int. J. Non-Linear Mech. 43, 569–578 (2008)

    Article  Google Scholar 

  15. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences. Springer, New York, NY (1983)

    Book  Google Scholar 

  16. Kabama, P.T., Meerkov, S.M., Poh, E.K.: Closed loop vibrational control: state and output feedback stabilizability. In: Proc. IEEE Conference on Decision and Control, Brighton, pp. 2375–2376 (1991)

  17. Kapitza, P.L.: Dynamical stability of a pendulum when its point of suspension vibrates. In: ter Haar, D. (ed.) Collected Papers of P. L. Kapitza, vol. 2, pp. 714–725. Pergamon, Oxford (1965)

    Google Scholar 

  18. Khalil, H.K.: Nonlinear Systems. Prentice-Hall Inc., Upper Saddle River (1996)

    Google Scholar 

  19. Meerkov, S.M.: Averaging of trajectories of slow dynamic systems. Differ. Equ. 9(9), 1239–1245 (1973)

    MATH  Google Scholar 

  20. Meerkov, S.M.: Vibrational control theory. J. Frankl. Inst. 303(2), 117–128 (1977)

    Article  Google Scholar 

  21. Meerkov, S.M.: Principle of vibrational control: theory and applications. IEEE Trans. Autom. Control AC–25(4), 755–762 (1980)

    Article  MathSciNet  Google Scholar 

  22. Meerkov, S.M.: Condition of vibrational stabilizability for a class of nonlinear systems. IEEE Trans. Autom. Control AC–27(2), 485–487 (1982)

    Article  MathSciNet  Google Scholar 

  23. Mitropolsky, Y.A.: Averaging method in non-linear mechanics. Int. J. Nonlinear Mech. 2(1), 69–96 (1967)

    Article  MathSciNet  Google Scholar 

  24. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  25. Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences. Springer, New York, NY (1985)

    Book  Google Scholar 

  26. Tahmasian, S.: On averaging and vibrational control of mechanical systems with multifrequency inputs. J. Dyn. Syst. Meas. Control 140(11), 111007 (2018). https://doi.org/10.1115/1.4040296

    Article  Google Scholar 

  27. Tahmasian, S., Woolsey, C.A.: A control design method for underactuated mechanical systems using high frequency inputs. ASME J. Dyn. Syst. Meas. Control 137(7), 071004 (2015). https://doi.org/10.1115/1.4029627

    Article  Google Scholar 

  28. Tahmasian, S., Woolsey, C.A.: Flight control of biomimetic air vehicles using vibrational control and averaging. J. Nonlinear Sci. 27(4), 1193–1214 (2017). https://doi.org/10.1007/s00332-016-9334-5

    Article  MathSciNet  MATH  Google Scholar 

  29. Tahmasian, S., Jafari, F., Woolsey, C.A.: On vibrational stabilization of a horizontal pendulum. In: Proc. ASME Dynamic Systems and Control Conference, Minneapolis, p. V002T24A004 (2016)

  30. Thomsen, J.J.: Vibrations and Stability. Springer, Berlin (2003)

    Book  Google Scholar 

  31. Thomsen, J.J.: Slow high-frequency effects in mechanics: problems, solutions, potentials. Int. J. Bifurc. Chaos 15(9), 2799–2818 (2005)

    Article  MathSciNet  Google Scholar 

  32. Vela, P.A., Burdick, J.W.: Control of underactuated mechanical systems with drift using higher-order averaging theory. In: Proc. IEEE Conference on Decision and Control, Maui, HI, pp. 3111–3117 (2003)

  33. Vela, P.A., Morgansen, K.A., Burdick, J.W.: Second order averaging methods for oscillatory control of underactuated mechanical systems. In: Proc. American Control Conference, Anchorage, AK, pp. 4672–4677 (2002)

  34. Weibel, S., Baillieul, J., Kaper, T.J.: Small-amplitude periodic motions of rapidly forced mechanical systems. In: Proc. Conference on Decision and Control, New Orleans, LA, pp. 533–539 (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevak Tahmasian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasian, S., Katrahmani, A. Vibrational control of mechanical systems with piecewise linear damping and high-frequency inputs. Nonlinear Dyn 99, 1403–1413 (2020). https://doi.org/10.1007/s11071-019-05361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05361-3

Keywords

Navigation