Skip to main content
Log in

Chaotic and subharmonic oscillations in a DC–DC boost converter with PWM voltage–current hybrid controller and parallel MR load

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper reports a pulse-width modulation voltage-mode- and current-mode-controlled DC–DC boost converter with parallel memristance and resistance loads. This circuit system has two distinct states, i.e., ON-state and OFF-state, which mainly depend on the outputs of a reset–set (RS) flip-flop that are subject to a voltage–current dual closed-loop controller and a \(T_r\)-periodic modulation signal. Based on the mathematical model and analyses of the circuit system, it is found that there exist chaotic and subharmonic dynamics for given parameters when the triggering period \(T_f\) of the RS flip-flop varies. To exhibit the existing nonlinear dynamics of the circuit system in NI Multisim, we also design a mixed-signal circuit to implement the reported system and the observed experimental results are consistent with the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ahrabi, R.R., Ardi, H., Elmi, M., Ajami, A.: A novel step-up multiinput DC–DC converter for hybrid electric vehicles application. IEEE Trans. Power Electron. 32(5), 3549 (2017)

    Google Scholar 

  2. Liu, J., Laghrouche, S., Wack, M.: Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications. Int. J. Control 87(6), 1117 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Tang, Y., Khaligh, A.: Bidirectional resonant DC–DC step-up converters for driving high-voltage actuators in mobile microrobots. IEEE Trans. Power Electron. 31(1), 340 (2016)

    Google Scholar 

  4. Katayama, N., Tosaka, S., Yamanaka, T., Hayase, M., Dowaki, K., Kogoshi, S.: New topology for DC–DC converters used in fuel cell-electric double layer capacitor hybrid power source systems for mobile devices. IEEE Trans. Ind. Appl. 52(1), 313 (2016)

    Google Scholar 

  5. Harfman-Todorovic, M., Palma, L., Enjeti, P.: A hybrid DC–DC converter for fuel cells powered laptop computers. In: 37th IEEE Power Electronics Specialists Conference (PESC’06), pp. 1–5. IEEE (2006)

  6. Sabzali, A.J., Ismail, E.H., Behbehani, H.M.: High voltage step-up integrated double boost-sepic DC–DC converter for fuel-cell and photovoltaic applications. Renew Energy 82, 44 (2015)

    Google Scholar 

  7. Shi, Y., Li, R., Xue, Y., Li, H.: Optimized operation of current-fed dual active bridge DC–DC converter for PV applications. IEEE Trans. Ind. Electron. 62(11), 6986 (2015)

    Google Scholar 

  8. Zainuri, M.A.A.M., Radzi, M.A.M., Soh, A.C., Rahim, N.A.: Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost DC–DC converter. IET Renew. Power Gener. 8(2), 183 (2014)

    Google Scholar 

  9. Zhioua, M., El Aroudi, A., Belghith, S., Bosque-Moncusí, J.M., Giral, R., Al Hosani, K., Al-Numay, M.: Modeling, dynamics, bifurcation behavior and stability analysis of a DC–DC boost converter in photovoltaic systems. Int. J. Bifurc. Chaos 26(10), 1650166 (2016)

    MathSciNet  Google Scholar 

  10. Merabet, A., Ahmed, K.T., Ibrahim, H., Beguenane, R., Ghias, A.M.: Energy management and control system for laboratory scale microgrid based wind-PV-battery. IEEE Trans. Sustain. Energy 8(1), 145 (2017)

    Google Scholar 

  11. Peña Asensio, A., Arnaltes Gómez, S., Rodriguez-Amenedo, J.L., García Plaza, M., Eloy-García Carrasco, J., de las Morenas, J.M.Alonso-Martínez: A voltage and frequency control strategy for stand-alone full converter wind energy conversion systems. Energies 11(3), 474 (2018)

    Google Scholar 

  12. Naayagi, R., Forsyth, A., Shuttleworth, R.: Bidirectional control of a dual active bridge DC–DC converter for aerospace applications. IET Power Electron. 5(7), 1104 (2012)

    Google Scholar 

  13. Naayagi, R., Forsyth, A.J., Shuttleworth, R.: High-power bidirectional DC–DC converter for aerospace applications. IEEE Trans. Power Electron. 27(11), 4366 (2012)

    Google Scholar 

  14. Toribio, E., El Aroudi, A., Olivar, G., Benadero, L.: Numerical and experimental study of the region of period-one operation of a PWM boost converter. IEEE Trans. Power Electron. 15(6), 1163 (2000)

    Google Scholar 

  15. El Aroudi, A., Debbat, M., Giral, R., Olivar, G., Benadero, L., Toribio, E.: Bifurcations in DC–DC switching converters: review of methods and applications. Int. J. Bifurc. Chaos 15(05), 1549 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Wu, C., Si, G., Zhang, Y., Yang, N.: The fractional-order state-space averaging modeling of the buck-boost DC/DC converter in discontinuous conduction mode and the performance analysis. Nonlinear Dyn. 79(1), 689 (2015)

    Google Scholar 

  17. Benmiloud, M., Benalia, A.: Finite-time stabilization of the limit cycle of two-cell DC/DC converter: hybrid approach. Nonlinear Dyn. 83(1–2), 319 (2016)

    MathSciNet  Google Scholar 

  18. Wang, L., Meng, Z., Sun, Y., Guo, L.: Bifurcation and chaos analysis of power converter for switched reluctance motor drive. Int. J. Electron. 104(1), 157 (2017)

    Google Scholar 

  19. Jia, Z., Liu, C.: Fractional-order modeling and simulation of magnetic coupled boost converter in continuous conduction mode. Int. J. Bifurc. Chaos 28(05), 1850061 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Deane, J.H.: Chaos in a current-mode controlled boost DC–DC converter. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 39(8), 680 (1992)

    Google Scholar 

  21. Cafagna, D., Grassi, G.: Experimental study of dynamic behaviors and routes to chaos in DC–DC boost converters. Chaos Solitons Fractals 25(2), 499 (2005)

    MATH  Google Scholar 

  22. Cafagna, D., Grassi, G.: Bifurcation analysis and chaotic behavior in boost converters: experimental results. Nonlinear Dyn. 44(1–4), 251 (2006)

    MATH  Google Scholar 

  23. Li, H., Tang, W.K.S., Li, Z., Halang, W.A.: A chaotic peak current-mode boost converter for EMI reduction and ripple suppression. IEEE Trans. Circuits Syst. II Express Br. 55(8), 763 (2008)

    Google Scholar 

  24. Giaouris, D., Banerjee, S., Stergiopoulos, F., Papadopoulou, S., Voutetakis, S., Zahawi, B., Pickert, V., Abusorrah, A., Al Hindawi, M., Al-Turki, Y.: Foldings and grazings of tori in current controlled interleaved boost converters. Int. J. Circuit Theory Appl. 42(10), 1080 (2014)

    Google Scholar 

  25. Cheng, W., Song, J., Li, H., Guo, Y.: Time-varying compensation for peak current-controlled PFC boost converter. IEEE Trans. Power Electron. 30(6), 3431 (2015)

    Google Scholar 

  26. El Aroudi, A., Benadero, L., Toribio, E., Olivar, G.: Hopf bifurcation and chaos from torus breakdown in a PWM voltage-controlled DC–DC boost converter. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46(11), 1374 (1999)

    Google Scholar 

  27. El Aroudi, A., Leyva, R.: Quasi-periodic route to chaos in a PWM voltage-controlled DC–DC boost converter. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(8), 967 (2001)

    Google Scholar 

  28. Jiang, W., Chincholkar, S.H., Chan, C.Y.: Investigation of a voltage-mode controller for a DC–DC multilevel boost converter. IEEE Trans. Circuits Syst. II Express Br. 65(7), 908 (2018)

    Google Scholar 

  29. di Bernardo, M., Garefalo, F., Glielmo, L., Vasca, F.: Switchings, bifurcations, and chaos in DC/DC converters. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 45(2), 133 (1998)

    Google Scholar 

  30. Li, H., Li, Z., Zhang, B., Zheng, Q., Halang, W.: The stability of a chaotic PWM boost converter. Int. J. Circuit Theory Appl. 39(5), 451 (2011)

    Google Scholar 

  31. Morcillo, J.D., Burbano, D., Angulo, F.: Adaptive ramp technique for controlling chaos and subharmonic oscillations in DC–DC power converters. IEEE Trans. Power Electron. 31(7), 5330 (2016)

    Google Scholar 

  32. Zhang, H., Li, W., Ding, H., Luo, P., Wan, X., Hu, W.: Nonlinear model analysis of transient behavior in cascade DC–DC boost converters. Int. J. Bifurc. Chaos 27(09), 1750140 (2017)

    MATH  Google Scholar 

  33. Corradini, L., Orietti, E., Mattavelli, P., Saggini, S.: Digital hysteretic voltage-mode control for DC–DC converters based on asynchronous sampling. IEEE Trans. Power Electron. 24(1), 201 (2009)

    Google Scholar 

  34. Gavagsaz-Ghoachani, R., Phattanasak, M., Zandi, M., Martin, J.P., Pierfederici, S., Nahid-Mobarakeh, B., Davat, B.: Estimation of the bifurcation point of a modulated-hysteresis current-controlled DC–DC boost converter: stability analysis and experimental verification. IET Power Electron. 8(11), 2195 (2015)

    Google Scholar 

  35. Zamani, N., Ataei, M., Niroomand, M.: Analysis and control of chaotic behavior in boost converter by ramp compensation based on Lyapunov exponents assignment: theoretical and experimental investigation. Chaos Solitons Fractals 81, 20 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Hu, W., Zhang, B., Yang, R., Qiu, D.: Dynamic behaviours of constant on-time one-cycle controlled boost converter. IET Power Electron. 11(1), 160 (2017)

    Google Scholar 

  37. Karamanakos, P., Geyer, T., Manias, S.: Direct voltage control of DC–DC boost converters using enumeration-based model predictive control. IEEE Trans. Power Electron. 29(2), 968 (2014)

    Google Scholar 

  38. Wang, B., Kanamarlapudi, V.R.K., Xian, L., Peng, X., Tan, K.T., So, P.L.: Model predictive voltage control for single-inductor multiple-output DC–DC converter with reduced cross regulation. IEEE Trans. Ind. Electron. 63(7), 4187 (2016)

    Google Scholar 

  39. Wei, Q., Wu, B., Xu, D., Zargari, N.R.: Model predictive control of capacitor voltage balancing for cascaded modular DC–DC converters. IEEE Trans. Power Electron. 32(1), 752 (2017)

    Google Scholar 

  40. Gurbina, M., Ciresan, A., Lascu, D., Lica, S., Pop-Calimanu, I.M.: A new exact mathematical approach for studying bifurcation in DCM operated DC–DC switching converters. Energies 11(3), 663 (2018)

    Google Scholar 

  41. Sriramalakshmi, P., Kavitha, A., Sanjeevikumar, P., Sutikno, T., Maroti, P.K., Ramachandaramurthy, V.K.: Control of chaos in a current mode controlled buck boost converter using weak periodic perturbation method. Int. J. Power Electron. Driv. Syst. 8(4), 1467 (2017)

    Google Scholar 

  42. Zhang, R., Wu, A., Zhang, S., Wang, Z., Cang, S.: Dynamical analysis and circuit implementation of a DC/DC single-stage boost converter with memristance load. Nonlinear Dyn. 93(3), 1741 (2018)

    Google Scholar 

  43. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507 (1971)

    Google Scholar 

  44. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80 (2008)

    Google Scholar 

  45. Abuelma’atti, M.T., Khalifa, Z.J.: A new floating memristor emulator and its application in frequency-to-voltage conversion. Analog Integr. Circuits Signal Process. 86(1), 141 (2016)

    Google Scholar 

  46. Iu, H.H.C., Yu, D., Fitch, A.L., Sreeram, V., Chen, H.: Controlling chaos in a memristor based circuit using a twin-T notch filter. IEEE Trans. Circuits Syst. I Regul. Pap. 58(6), 1337 (2011)

    MathSciNet  Google Scholar 

  47. Fouda, M.E., Radwan, A.G.: Memristor-based voltage-controlled relaxation oscillators. Int. J. Circuit Theory Appl. 42(10), 1092 (2014)

    Google Scholar 

  48. Tse, C.K., Di Bernardo, M.: Complex behavior in switching power converters. Proc. IEEE 90(5), 768 (2002)

    Google Scholar 

  49. Zhou, G., Xu, J., Jin, Y.: Elimination of subharmonic oscillation of digital-average-current-controlled switching DC–DC converters. IEEE Trans. Ind. Electron. 57(8), 2904 (2010)

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China (Grant Nos. 61873186 and 61773282), the Application Base and Frontier Technology Research Project of Tianjin of China (Grant Nos. 13JCQNJC03600) and South African National Research Foundation (Grant Nos. 112142 and 112108), South African National Research Foundation Incentive Grant (No. 114911) and Tertiary Education Support Programme (TESP) of South African ESKOM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijian Cang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wu, A., Wang, Z. et al. Chaotic and subharmonic oscillations in a DC–DC boost converter with PWM voltage–current hybrid controller and parallel MR load. Nonlinear Dyn 99, 1321–1339 (2020). https://doi.org/10.1007/s11071-019-05357-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05357-z

Keywords

Navigation