Skip to main content
Log in

Sampled-data output voltage regulation for a DC–DC buck converter nonlinear system with actuator and sensor failures

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper considers the regulation problem for a DC–DC buck converter nonlinear system with uncertain components and actuator and sensor failures. We establish a novel reduced-order observer to estimate the unmeasured state. Then, a new fault-tolerant sampled-data controller with an allowable sampling period is constructed to guarantee that the output voltage of the DC–DC buck converter nonlinear system can tend to the desired voltage. Finally, simulation results are presented to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Qian, Z., Rahman, A., Atrash, A.: Batarseh: modeling and control of three-tort DC/DC converter interface for satellite applications. IEEE Trans. Power Electron. 25, 637–649 (2010)

    Article  Google Scholar 

  2. Engel, S., Soltau, N., Stagge, H., De, D.: Dynamic and balanced control of three-phase high-power dual-active bridge DC–DC converters in DC-grid applications. IEEE Trans. Power Electron. 28, 1880–1889 (2013)

    Article  Google Scholar 

  3. Camara, M., Gualous, H., Gustin, F., Berthon, A., Dakyo, B.: DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications-polynomial control strategy. IEEE Trans. Ind. Electron. 57, 587–597 (2010)

    Article  Google Scholar 

  4. Olalla, C., Clement, D., Rodriguez, M., Maksimovic, D.: Architectures and control of submodule integrated DC–DC converters for photovoltaic applications. IEEE Trans. Power. Electron. 28, 2980–2997 (2013)

    Article  Google Scholar 

  5. Kim, S.K., Ahn, C.K.: Self-tuning proportional-type performance recovery property output voltage-tracking controller for DC/DC boost converter. IEEE Trans. Ind. Electron. 66(4), 3167–3175 (2019)

    Article  Google Scholar 

  6. Kim, S.K., Ahn, C.K.: Robust invariant manifold-based output voltage-tracking algorithm for DC/DC boost converter systems. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2899152

    Article  Google Scholar 

  7. Kim, S.K., Ahn, C.K.: Nonlinear tracking controller for DC/DC boost converter voltage control applications via energy-shaping and invariant dynamic surface approach. IEEE Trans. Circuits Syst. II Exp. Briefs (2019). https://doi.org/10.1109/TCSII.2018.2890440

    Article  Google Scholar 

  8. Middlebrook, R., Cuk, S.: A general unified approach to modelling switching-converter power stages. Proc. Power Electron. Spec. Conf. 1, 18–34 (1976)

    Google Scholar 

  9. Fang, C.: Instability conditions for a class of switched linear systems with switching delays based on sampled-data analysis: applications to DC-DC converters. Nonlinear Dyn. 77, 185–208 (2014)

    Article  MathSciNet  Google Scholar 

  10. Xu, Q., Zhang, C., Wen, C., Wang, P.: A Novel composite nonlinear controller for stabilization of constant power load in DC microgrid. IEEE Trans. Smart Grid. 10(1), 752–761 (2019)

    Article  Google Scholar 

  11. Du, H., Cheng, Y., He, Y., Jia, R.: Finite-time output feedback control for a class of second-order nonlinear systems with application to DC–DC buck converters. Nonlinear Dyn. 78, 2021–2030 (2014)

    Article  Google Scholar 

  12. Li, Z., Zhao, J.: Output feedback stabilization for a general class of nonlinear systems via sampled-data control. Int. J. Robust Nonlinear Control. 28, 2853–2867 (2018)

    Article  MathSciNet  Google Scholar 

  13. Salimi, M., Soltani, J., Markadeh, G., Abjadi, N.: Indirect output voltage regulation of DC–DC buck/boost converter operating in continuous and discontinuous conduction modes using adaptive backstepping approach. IEEE Trans. Power Electron. 6, 732–741 (2014)

    Article  Google Scholar 

  14. Wu, H., Pickert, V., Deng, X., Giaouris, D., Li, W., He, X.: Second-order sliding-mode controlled synchronous buck DC–DC converter. IEEE Trans. Power Electron. 31, 2539–2549 (2016)

    Article  Google Scholar 

  15. Qian, C., Du, H.: Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control. IEEE Trans. Autom. Control. 57, 2934–2938 (2012)

    Article  MathSciNet  Google Scholar 

  16. Du, H., Qian, C., Li, S., Chu, Z.: Global sampled-data output feedback stabilization for a class of uncertain nonlinear systems. Automatic 99, 403–411 (2019)

    Article  MathSciNet  Google Scholar 

  17. Zhai, J., Du, H., Fei, S.: Global sampled-data output feedback stabilisation for a class of nonlinear systems with unknown output function. Int. J. Control. 89, 469–480 (2016)

    Article  MathSciNet  Google Scholar 

  18. Lan, Q., Li, S.: Global output-feedback stabilization for a class of stochastic nonlinear systems via sampled-data control. Int. J. Robust Nonlinear Control. 28, 3643–3658 (2018)

    Article  MathSciNet  Google Scholar 

  19. Du, H., Li, S., Qian, C., He, Y.: Global stabilization of a class of inherently nonlinear systems under sampled-data control. Acta Autom. Sin. 40, 379–384 (2014)

    Google Scholar 

  20. Jia, J., Chen, W., Dai, H.: Global stabilization of high-order nonlinear systems under multi-rate sampled-data control. Nonlinear Dyn. 94(4), 2441–2453 (2018)

    Article  Google Scholar 

  21. Qian, C., Du, H., Li, S.: Global stabilization via sampled-data output feedback for a class of linearly uncontrollable and unobservable systems. IEEE Trans. Autom. Control. 61, 4088–4093 (2016)

    Article  MathSciNet  Google Scholar 

  22. Du, H., Qian, C., Li, S.: Global stabilization of a class of uncertain upper-triangular systems under sampled-data control. Int. J. Robust Nonlinear Control. 23, 620–637 (2013)

    Article  MathSciNet  Google Scholar 

  23. Zhang, C., Yang, J.: Semi-global sampled-data output feedback disturbance rejection control for a class of uncertain nonlinear systems. Int. J. Syst. Sci. 48(4), 757–768 (2017)

    Article  MathSciNet  Google Scholar 

  24. Zhang, C., Jia, R., Qian, C., Li, S.: Semi-global stabilization via linear sampled-data output feedback for a class of uncertain nonlinear systems. Int. J. Robust Nonlinear Control. 25(13), 2041–2061 (2015)

    Article  MathSciNet  Google Scholar 

  25. Chu, H., Qian, C., Liu, R., Di, L.: Global practical tracking of a class of nonlinear systems using linear sampled-data control. Int. J. Control. 88, 1851–1860 (2015)

    Article  MathSciNet  Google Scholar 

  26. Wang, Z., Zhai, J., Ai, W., Fei, S.: Global practical tracking for a class of uncertain nonlinear systems via sampled-data control. Appl. Math. Comput. 260, 257–268 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Lin, W., Wei, W., Ye, G.: Global stabilization of a class of nonminimum-phase nonlinear systems by sampled-data output feedback. IEEE Trans. Autom. Control. 61, 3076–3082 (2016)

    Article  MathSciNet  Google Scholar 

  28. Zhang, D., Shen, Y.: Global output feedback sampled-data stabilization for upper-triangular nonlinear systems with improved maximum allowable transmission delay. Int. J. Robust Nonlinear Control. 27, 212–235 (2017)

    Article  MathSciNet  Google Scholar 

  29. Liu, W., Lim, C., Shi, P., Xu, S.: Sampled-data fuzzy control for a class of nonlinear systems with missing data and disturbances. Fuzzy Sets Syst. 306, 63–86 (2017)

    Article  MathSciNet  Google Scholar 

  30. He, H., Gao, X., Qi, W.: Sampled-data control of asynchronously switched non-linear systems via T-S fuzzy model approach. IET Control Theory Appl. 11, 2817–2823 (2017)

    Article  MathSciNet  Google Scholar 

  31. Wang, J., Li, H., Wu, H.: Fuzzy guaranteed cost sampled-data control of nonlinear systems coupled with a scalar reaction-diffusion process. Fuzzy Sets Syst. 302, 121–142 (2016)

    Article  MathSciNet  Google Scholar 

  32. Ge, C., Wang, H., Liu, Y., Park, J.: Further results on stabilization of neural-network-based systems using sampled-data control. Nonlinear Dyn. 90, 2209–2219 (2017)

    Article  MathSciNet  Google Scholar 

  33. Huang, S., Cai, M., Xiang, Z.: Robust sampled-data H infinity control for offshore platforms subject to irregular wave forces and actuator saturation. Nonlinear Dyn. 88, 2705–2721 (2017)

    Article  Google Scholar 

  34. Song, P., Cui, C., Bai, Y.: Robust output voltage regulation for DC–DC buck converters under load variations via sampled-data sensorless control. IEEE Access. 6, 10688–10698 (2018)

    Article  Google Scholar 

  35. Zhang, C., Wang, J., Li, S., Wu, B., Qian, C.: Robust control for PWM-based DC–DC buck power converters with uncertainty via sampled-data output feedback. IEEE Trans. Power Electron. 30, 504–515 (2015)

    Article  Google Scholar 

  36. Guilbert, D., Guarisco, M., Gaillard, A., N’Diaye, A., Djerdir, A.: FPGA based fault-tolerant control on an interleaved DC/DC boost converter for fuel cell electric vehicle applications. Int. J. Hydrogen Energy. 40, 15815–15822 (2015)

    Article  Google Scholar 

  37. Hardy, G., Littlewood, J., Pslya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    Google Scholar 

  38. Apostol, T.: Mathematical Analysis, 2nd edn. Addison-Wesley, New Jersey (1974)

    MATH  Google Scholar 

Download references

Funding

The funding was provided by National Natural Science Foundation of China (Grant No. 61873128).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Choon Ki Ahn or Zhengrong Xiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, S., Ahn, C.K. et al. Sampled-data output voltage regulation for a DC–DC buck converter nonlinear system with actuator and sensor failures. Nonlinear Dyn 99, 1243–1252 (2020). https://doi.org/10.1007/s11071-019-05350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05350-6

Keywords

Navigation