Skip to main content
Log in

Solitons and periodic waves for the (2 + 1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics

Nonlinear Dynamics Aims and scope Submit manuscript

Cite this article

Abstract

Fluid mechanics has the applications in a wide range of disciplines, such as oceanography, astrophysics, meteorology, and biomedical engineering. Under investigation in this paper is the (\(2+1\))-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics. Via the Pfaffian technique and certain constraint on the real constant \(\alpha \), the Nth-order Pfaffian solutions are derived. One- and two-soliton solutions are obtained via the Nth-order Pfaffian solutions. Based on the Hirota–Riemann method, one- and two-periodic wave solutions are constructed. With the help of the analytic and graphic analysis, we notice that: (1) of the one soliton, amplitude is irrelevant to \(\gamma \), a real constant coefficient in the equation, velocity along the x direction is independent of \(\gamma \), while velocity along the y direction is proportional to \(\gamma \); (2) one soliton keeps its amplitude and velocity invariant during the propagation and total amplitude of the two solitons in the interaction region is lower than that of any soliton; (3) one-periodic wave can be viewed as a superposition of the overlapping solitary waves, placed one period apart; (4) periodic behaviors for the two-periodic wave exist along the x and y directions, respectively; (5) under certain limiting conditions, one-periodic wave solutions approach to the one-soliton solutions and two-periodic wave solutions approach to the two-soliton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. One-periodic wave implies the wave propagating with the constant period in the x, y and t directions [63].

  2. Two-periodic wave indicates a periodic wave formed by the superposition of two waves with the different periods in the x, y and t directions [63].

References

  1. Nakayama, Y., Boucher, R.F.: Introduction to Fluid Mechanics. Butterworth-Heinemann, Oxford (1999)

    Google Scholar 

  2. Maris, H.J.: Note on the history effect in fluid mechanics. Am. J. Phys. 87, 643 (2019)

    Google Scholar 

  3. Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94, 2655–2663 (2018)

    Google Scholar 

  4. Lan, Z.Z., Su, J.J.: Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system. Nonlinear Dyn. 96, 2535–2546 (2019)

    Google Scholar 

  5. Gao, X.Y.: Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation. Appl. Math. Lett. 73, 143–149 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Gao, X.Y.: Mathematical view with observational/experi-mental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas. Appl. Math. Lett. 91, 165–172 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Zhao, X.H., Tian, B., Guo, Y.J., Li, H.M.: Solitons interaction and integrability for a (2+1)-dimensional variable-coefficient Broer-Kaup system in water waves. Mod. Phys. Lett. B 32, 1750268 (2018)

    MathSciNet  Google Scholar 

  8. Zhao, X.H., Tian, B., Xie, X.Y., Wu, X.Y., Sun, Y., Guo, Y.J.: Solitons, Backlund transformation and Lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth. Wave. Random Complex 28, 356–366 (2018)

    Google Scholar 

  9. Fogelson, A.L., Neeves, K.B.: Fluid mechanics of blood clot formation. Annu. Rev. Fluid Mech. 47, 377–403 (2015)

    MathSciNet  Google Scholar 

  10. Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83, 591–596 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Johnson, R.S.: Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography. Philos. Trans. R. Soc. Lond. A 376, 1 (2017)

    Google Scholar 

  12. Teyssier, R.: Grid-based hydrodynamics in astrophysical fluid flows. Annu. Rev. Astron. Astrophys. 53, 325–364 (2015)

    Google Scholar 

  13. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Yuan, Y.Q., Tian, B., Liu, L., Wu, X.Y., Sun, Y.: Solitons for the (2+1)-dimensional Konopelchenko-Dubrovsky equations. J. Math. Anal. Appl. 460, 476–486 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Yuan, Y.Q., Tian, B., Chai, H.P., Wu, X.Y., Du, Z.: Vector semirational rogue waves for a coupled nonlinear Schrödinger system in a birefringent fiber. Appl. Math. Lett. 87, 50–56 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Yin, H.M., Tian, B., Chai, J., Wu, X.Y.: Stochastic soliton solutions for the (2+1)-dimensional stochastic Broer-Kaup equations in a fluid or plasma. Appl. Math. Lett. 82, 126–131 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Lan, Z.Z., Hu, W.Q., Guo, B.L.: General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation. Appl. Math. Model. 73, 695–714 (2019)

    MathSciNet  Google Scholar 

  18. Liu, L., Tian, B., Yuan, Y.Q., Du, Z.: Dark-bright solitons and semirational rogue waves for the coupled Sasa-Satsuma equations. Phys. Rev. E 97, 052217 (2018)

    MathSciNet  Google Scholar 

  19. Xie, X.Y., Meng, G.Q.: Dark solitons for the (2+1)-dimensional Davey–Stewartson-like equations in the electrostatic wave packets. Nonlinear Dyn. 93, 779–783 (2018)

    Google Scholar 

  20. Benjamin, T.B., Feir, J.E.: The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech. 27, 417–430 (1967)

    MATH  Google Scholar 

  21. Jackiw, R., Pi, S.Y.: Soliton solutions to the gauged nonlinear Schrödinger equation on the plane. Phys. Rev. Lett. 64, 2969 (1990)

    MathSciNet  MATH  Google Scholar 

  22. Dai, C.Q., Wang, Y.Y., Fan, Y., Yu, D.G.: Reconstruction of stability for Gaussian spatial solitons in quintic-septimal nonlinear materials under PT-symmetric potentials. Nonlinear Dyn. 92, 1351–1358 (2018)

    Google Scholar 

  23. Yin, H.M., Tian, B., Chai, J., Liu, L., Sun, Y.: Numerical solutions of a variable-coefficient nonlinear Schrödinger equation for an inhomogeneous optical fiber. Comput. Math. Appl. 76, 1827–1836 (2018)

    MathSciNet  Google Scholar 

  24. Du, Z., Tian, B., Chai, H.P., Sun, Y., Zhao, X.H.: Rogue waves for the coupled variable-coefficient fourth-order nonlinear Schrödinger equations in an inhomogeneous optical fiber. Chaos Soliton. Fract. 109, 90–98 (2018)

    MATH  Google Scholar 

  25. Du, Z., Tian, B., Chai, H.P., Yuan, Y.Q.: Vector multi-rogue waves for the three-coupled fourth-order nonlinear Schrödinger equations in an alpha helical protein. Commun. Nonlinear Sci. Numer. Simulat. 67, 49–59 (2019)

    Google Scholar 

  26. Zhang, C.R., Tian, B., Wu, X.Y., Yuan, Y.Q., Du, X.X.: Rogue waves and solitons of the coherently coupled nonlinear Schrödinger equations with the positive coherent coupling. Phys. Scr. 93, 095202 (2018)

    Google Scholar 

  27. Wazwaz, A.M.: Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method. Chaos Solitons Fractals 12, 1549–1556 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Liu, J.G., Zhou, L., He, Y.: Multiple soliton solutions for the new (2+1)-dimensional Korteweg–de Vries equation by multiple exp-function method. Appl. Math. Lett. 80, 71–78 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Osman, M.S., Wazwaz, A.M.: An efficient algorithm to construct multi-soliton rational solutions of the (2+1)-dimensional KdV equation with variable coefficients. Appl. Math. Comput. 321, 282–289 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, C.R., Tian, B., Liu, L., Chai, H.P., Du, Z.: Vector breathers with the negatively coherent coupling in a weakly birefringent fiber. Wave Motion 84, 68–80 (2019)

    MathSciNet  Google Scholar 

  31. Du, X.X., Tian, B., Wu, X.Y., Yin, H.M., Zhang, C.R.: Lie group analysis, analytic solutions and conservation laws of the (3 + 1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electron-positron-ion plasma. Eur. Phys. J. Plus 133, 378 (2018)

    Google Scholar 

  32. Ahmed, I., Seadawy, A.R., Lu, D.C.: Mixed lump-solitons, periodic lump and breather soliton solutions for (2+1)-dimensional extended Kadomtsev–Petviashvili dynamical equation. Int. J. Mod. Phys. B 33, 1950019 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Manukure, S., Zhou, Y., Ma, W.X.: Lump solutions to a (2+1)-dimensional extended KP equation. Comput. Math. Appl. 75, 2414–2419 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Sun, Y., Tian, B., Xie, X.Y., Chai, J., Yin, H.M.: Rogue waves and lump solitons for a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics. Wave Random Complex 28, 544–552 (2018)

    MathSciNet  Google Scholar 

  35. Qian, C., Rao, J.G., Liu, Y.B., He, J.S.: Rogue waves in the three-dimensional Kadomtsev–Petviashvili equation. Chin. Phys. Lett. 33, 110201 (2016)

    Google Scholar 

  36. Hu, C.C., Tian, B., Wu, X.Y., Du, Z., Zhao, X.H.: Lump wave-soliton and rogue wave-soliton interactions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in a fluid. Chin. J. Phys. 56, 2395–2403 (2018)

    MathSciNet  Google Scholar 

  37. Hu, C.C., Tian, B., Wu, X.Y., Yuan, Y.Q., Du, Z.: Mixed lump-kink and rogue wave-kink solutions for a (3 + 1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid mechanics. Eur. Phys. J. Plus 133, 40 (2018)

    Google Scholar 

  38. Huang, Q.M., Gao, Y.T.: Wronskian, Pfaffian and periodic wave solutions for a (2+1)-dimensional extended shallow water wave equation. Nonlinear Dyn. 89, 2855–2866 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Arkadiev, V.A., Pogrebkov, A.K., Polivanov, M.C.: Inverse scattering transform method and soliton solutions for Davey–Stewartson II equation. Physica D 36, 189–197 (1989)

    MathSciNet  MATH  Google Scholar 

  40. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Khalique, C.M., Biswas, A.: A Lie symmetry approach to nonlinear Schrödinger’s equation with non-Kerr law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 14, 4033–4040 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Chen, S.S., Tian, B., Sun, Y., Zhang, C.R.: Generalized Darboux Transformations, Rogue Waves, and Modulation Instability for the Coherently Coupled Nonlinear Schrödinger Equations in Nonlinear Optics. Ann. Phys. (2019). https://doi.org/10.1002/andp.201900011

    Article  Google Scholar 

  43. Chen, S.S., Tian, B., Liu, L., Yuan, Y.Q., Zhang, C.R.: Conservation laws, binary Darboux transformations and solitons fora higher-order nonlinear Schrödinger system. Chaos, Solitons Fractals 118, 337–346 (2019)

    MathSciNet  Google Scholar 

  44. Nakamura, A., Ohta, Y.: Bilinear, Pfaffian and Legendre function structuresof the Tomimatsu–Sato solutions of the Ernst equation in general relativity. J. Phys. Soc. Jpn. 60, 1835–1838 (1991)

    Google Scholar 

  45. Kumar, S., Zhou, Q., Bhrawy, A.H., Zerrad, E., Biswas, A., Belic, M.: Optical solitons in birefringent fibers by Lie symmetry analysis. Rom. Rep. Phys. 68, 341–352 (2016)

    Google Scholar 

  46. Lan, Z.Z.: Periodic, breather and rogue wave solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid dynamics. Appl. Math. Lett. 94, 126–132 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Ohta, Y.: Pfaffian solution for coupled discrete nonlinear Schrödinger equation. Chaos Solitons Fractals 11, 91–95 (2000)

    MathSciNet  MATH  Google Scholar 

  48. Wang, M., Tian, B., Sun, Y., Yin, H.M., Zhang, Z.: Mixed lump-stripe, bright rogue wave-stripe, dark rogue wave stripe and dark rogue wave solutions of a generalized Kadomtsev-Petviashvili equation in fluid mechanics. Chin. J. Phys. 60, 440–449 (2019)

    MathSciNet  Google Scholar 

  49. Xie, X.Y., Meng, G.Q.: Collisions between the dark solitons for a nonlinear system in the geophysical fluid. Chaos, Solitons Fractals 107, 143–145 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Xie, X.Y., Meng, G.Q.: Dark solitons for a variable-coefficient AB system in the geophysical fluids or nonlinear optics. Eur. Phys. J. Plus 134, 359 (2019)

    Google Scholar 

  51. Gilson, C.R.: Generalizing the KP hierarchies: Pfaffian hierarchies. Theor. Math. Phys. 133, 1663–1674 (2002)

    MATH  Google Scholar 

  52. Ma, P.L., Tian, S.F., Zou, L., Zhang, T.T.: The solitary waves, quasi-periodic waves and integrability of a generalized fifth-order Korteweg–de Vries equation. Wave Random Complex 29, 247–263 (2019)

    MathSciNet  Google Scholar 

  53. Peng, W.Q., Tian, S.F., Zou, L., Zhang, T.T.: Characteristics of the solitary waves and lump waves with interaction phenomena in a (2+1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Nonlinear Dyn. 93, 1841–1851 (2018)

    MATH  Google Scholar 

  54. Meng, X.H.: The periodic solitary wave solutions for the (2 + 1)-dimensional fifth-order KdV equation. J. Appl. Math. Phys. 2, 639–643 (2014)

    Google Scholar 

  55. Cao, C.W., Wu, Y.T., Geng, X.G.: On quasi-periodic solutions of the 2+1 dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Phys. Lett. A 256, 59–65 (1999)

    Google Scholar 

  56. Fang, T., Gao, C.N., Wang, H., Wang, Y.H.: Lump-type solution, rogue wave, fusion and fission phenomena for the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Mod. Phys. Lett. B 33, 1950198 (2019)

    MathSciNet  Google Scholar 

  57. Batwa, S., Ma, W.X.: Lump solutions to a (2+1)-dimensional fifth-order KdV-like equation. Adv. Math. Phys. 2018, 2062398 (2018)

    MathSciNet  MATH  Google Scholar 

  58. Gupta, A.K., Ray, S.S.: Numerical treatment for the solution of fractional fifth-order Sawada–Kotera equation using second kind Chebyshev wavelet method. Appl. Math. Model. 39, 5121–5130 (2015)

    MathSciNet  MATH  Google Scholar 

  59. Liu, C.F., Dai, Z.D.: Exact soliton solutions for the fifth-order Sawada–Kotera equation. Appl. Math. Comput. 206, 272–275 (2008)

    MathSciNet  MATH  Google Scholar 

  60. Naher, H., Abdullah, F.A., Mohyud-Din, S.T.: Extended generalized Riccati equation mapping method for the fifth-order Sawada–Kotera equation. AIP Adv. 3, 052104 (2013)

    Google Scholar 

  61. Guo, Y.F., Li, D.L., Wang, J.X.: The new exact solutions of the fifth-order Sawada–Kotera equation using three wave method. Appl. Math. Lett. 94, 232–237 (2019)

    MathSciNet  MATH  Google Scholar 

  62. Hirota, R.: The Direct Method in Soliton Theory. Cambridge Univ. Press, Cambridge (2004)

    MATH  Google Scholar 

  63. Xu, M.J., Tian, S.F., Tu, J.M., Ma, P.L., Zhang, T.T.: Quasi-periodic wave solutions with asymptotic analysis to the Saweda–Kotera–Kadomtsev–Petviashvili equation. Eur. Phys. J. Plus 130, 174 (2015)

    Google Scholar 

  64. Furukawa, M., Tokuda, S.: Mechanism of stabilization of ballooning modes by toroidal rotation shear in tokamaks. Phys. Rev. Lett. 94, 175001 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the members of their discussion group for their valuable suggestions. This work has been supported by the National Natural Science Foundation of China under Grant No. 11772017, and by the Fundamental Research Funds for the Central Universities under Grant No. 50100002016105010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tian Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, GF., Gao, YT., Su, JJ. et al. Solitons and periodic waves for the (2 + 1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics. Nonlinear Dyn 99, 1039–1052 (2020). https://doi.org/10.1007/s11071-019-05328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05328-4

Keywords

Navigation