Abstract
Fluid mechanics has the applications in a wide range of disciplines, such as oceanography, astrophysics, meteorology, and biomedical engineering. Under investigation in this paper is the (\(2+1\))-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics. Via the Pfaffian technique and certain constraint on the real constant \(\alpha \), the Nth-order Pfaffian solutions are derived. One- and two-soliton solutions are obtained via the Nth-order Pfaffian solutions. Based on the Hirota–Riemann method, one- and two-periodic wave solutions are constructed. With the help of the analytic and graphic analysis, we notice that: (1) of the one soliton, amplitude is irrelevant to \(\gamma \), a real constant coefficient in the equation, velocity along the x direction is independent of \(\gamma \), while velocity along the y direction is proportional to \(\gamma \); (2) one soliton keeps its amplitude and velocity invariant during the propagation and total amplitude of the two solitons in the interaction region is lower than that of any soliton; (3) one-periodic wave can be viewed as a superposition of the overlapping solitary waves, placed one period apart; (4) periodic behaviors for the two-periodic wave exist along the x and y directions, respectively; (5) under certain limiting conditions, one-periodic wave solutions approach to the one-soliton solutions and two-periodic wave solutions approach to the two-soliton solutions.
This is a preview of subscription content,
to check access.



References
Nakayama, Y., Boucher, R.F.: Introduction to Fluid Mechanics. Butterworth-Heinemann, Oxford (1999)
Maris, H.J.: Note on the history effect in fluid mechanics. Am. J. Phys. 87, 643 (2019)
Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94, 2655–2663 (2018)
Lan, Z.Z., Su, J.J.: Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system. Nonlinear Dyn. 96, 2535–2546 (2019)
Gao, X.Y.: Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation. Appl. Math. Lett. 73, 143–149 (2017)
Gao, X.Y.: Mathematical view with observational/experi-mental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas. Appl. Math. Lett. 91, 165–172 (2019)
Zhao, X.H., Tian, B., Guo, Y.J., Li, H.M.: Solitons interaction and integrability for a (2+1)-dimensional variable-coefficient Broer-Kaup system in water waves. Mod. Phys. Lett. B 32, 1750268 (2018)
Zhao, X.H., Tian, B., Xie, X.Y., Wu, X.Y., Sun, Y., Guo, Y.J.: Solitons, Backlund transformation and Lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth. Wave. Random Complex 28, 356–366 (2018)
Fogelson, A.L., Neeves, K.B.: Fluid mechanics of blood clot formation. Annu. Rev. Fluid Mech. 47, 377–403 (2015)
Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83, 591–596 (2016)
Johnson, R.S.: Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography. Philos. Trans. R. Soc. Lond. A 376, 1 (2017)
Teyssier, R.: Grid-based hydrodynamics in astrophysical fluid flows. Annu. Rev. Astron. Astrophys. 53, 325–364 (2015)
Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)
Yuan, Y.Q., Tian, B., Liu, L., Wu, X.Y., Sun, Y.: Solitons for the (2+1)-dimensional Konopelchenko-Dubrovsky equations. J. Math. Anal. Appl. 460, 476–486 (2018)
Yuan, Y.Q., Tian, B., Chai, H.P., Wu, X.Y., Du, Z.: Vector semirational rogue waves for a coupled nonlinear Schrödinger system in a birefringent fiber. Appl. Math. Lett. 87, 50–56 (2019)
Yin, H.M., Tian, B., Chai, J., Wu, X.Y.: Stochastic soliton solutions for the (2+1)-dimensional stochastic Broer-Kaup equations in a fluid or plasma. Appl. Math. Lett. 82, 126–131 (2018)
Lan, Z.Z., Hu, W.Q., Guo, B.L.: General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation. Appl. Math. Model. 73, 695–714 (2019)
Liu, L., Tian, B., Yuan, Y.Q., Du, Z.: Dark-bright solitons and semirational rogue waves for the coupled Sasa-Satsuma equations. Phys. Rev. E 97, 052217 (2018)
Xie, X.Y., Meng, G.Q.: Dark solitons for the (2+1)-dimensional Davey–Stewartson-like equations in the electrostatic wave packets. Nonlinear Dyn. 93, 779–783 (2018)
Benjamin, T.B., Feir, J.E.: The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech. 27, 417–430 (1967)
Jackiw, R., Pi, S.Y.: Soliton solutions to the gauged nonlinear Schrödinger equation on the plane. Phys. Rev. Lett. 64, 2969 (1990)
Dai, C.Q., Wang, Y.Y., Fan, Y., Yu, D.G.: Reconstruction of stability for Gaussian spatial solitons in quintic-septimal nonlinear materials under PT-symmetric potentials. Nonlinear Dyn. 92, 1351–1358 (2018)
Yin, H.M., Tian, B., Chai, J., Liu, L., Sun, Y.: Numerical solutions of a variable-coefficient nonlinear Schrödinger equation for an inhomogeneous optical fiber. Comput. Math. Appl. 76, 1827–1836 (2018)
Du, Z., Tian, B., Chai, H.P., Sun, Y., Zhao, X.H.: Rogue waves for the coupled variable-coefficient fourth-order nonlinear Schrödinger equations in an inhomogeneous optical fiber. Chaos Soliton. Fract. 109, 90–98 (2018)
Du, Z., Tian, B., Chai, H.P., Yuan, Y.Q.: Vector multi-rogue waves for the three-coupled fourth-order nonlinear Schrödinger equations in an alpha helical protein. Commun. Nonlinear Sci. Numer. Simulat. 67, 49–59 (2019)
Zhang, C.R., Tian, B., Wu, X.Y., Yuan, Y.Q., Du, X.X.: Rogue waves and solitons of the coherently coupled nonlinear Schrödinger equations with the positive coherent coupling. Phys. Scr. 93, 095202 (2018)
Wazwaz, A.M.: Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method. Chaos Solitons Fractals 12, 1549–1556 (2001)
Liu, J.G., Zhou, L., He, Y.: Multiple soliton solutions for the new (2+1)-dimensional Korteweg–de Vries equation by multiple exp-function method. Appl. Math. Lett. 80, 71–78 (2018)
Osman, M.S., Wazwaz, A.M.: An efficient algorithm to construct multi-soliton rational solutions of the (2+1)-dimensional KdV equation with variable coefficients. Appl. Math. Comput. 321, 282–289 (2018)
Zhang, C.R., Tian, B., Liu, L., Chai, H.P., Du, Z.: Vector breathers with the negatively coherent coupling in a weakly birefringent fiber. Wave Motion 84, 68–80 (2019)
Du, X.X., Tian, B., Wu, X.Y., Yin, H.M., Zhang, C.R.: Lie group analysis, analytic solutions and conservation laws of the (3 + 1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electron-positron-ion plasma. Eur. Phys. J. Plus 133, 378 (2018)
Ahmed, I., Seadawy, A.R., Lu, D.C.: Mixed lump-solitons, periodic lump and breather soliton solutions for (2+1)-dimensional extended Kadomtsev–Petviashvili dynamical equation. Int. J. Mod. Phys. B 33, 1950019 (2019)
Manukure, S., Zhou, Y., Ma, W.X.: Lump solutions to a (2+1)-dimensional extended KP equation. Comput. Math. Appl. 75, 2414–2419 (2018)
Sun, Y., Tian, B., Xie, X.Y., Chai, J., Yin, H.M.: Rogue waves and lump solitons for a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics. Wave Random Complex 28, 544–552 (2018)
Qian, C., Rao, J.G., Liu, Y.B., He, J.S.: Rogue waves in the three-dimensional Kadomtsev–Petviashvili equation. Chin. Phys. Lett. 33, 110201 (2016)
Hu, C.C., Tian, B., Wu, X.Y., Du, Z., Zhao, X.H.: Lump wave-soliton and rogue wave-soliton interactions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in a fluid. Chin. J. Phys. 56, 2395–2403 (2018)
Hu, C.C., Tian, B., Wu, X.Y., Yuan, Y.Q., Du, Z.: Mixed lump-kink and rogue wave-kink solutions for a (3 + 1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid mechanics. Eur. Phys. J. Plus 133, 40 (2018)
Huang, Q.M., Gao, Y.T.: Wronskian, Pfaffian and periodic wave solutions for a (2+1)-dimensional extended shallow water wave equation. Nonlinear Dyn. 89, 2855–2866 (2017)
Arkadiev, V.A., Pogrebkov, A.K., Polivanov, M.C.: Inverse scattering transform method and soliton solutions for Davey–Stewartson II equation. Physica D 36, 189–197 (1989)
Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915 (2016)
Khalique, C.M., Biswas, A.: A Lie symmetry approach to nonlinear Schrödinger’s equation with non-Kerr law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 14, 4033–4040 (2009)
Chen, S.S., Tian, B., Sun, Y., Zhang, C.R.: Generalized Darboux Transformations, Rogue Waves, and Modulation Instability for the Coherently Coupled Nonlinear Schrödinger Equations in Nonlinear Optics. Ann. Phys. (2019). https://doi.org/10.1002/andp.201900011
Chen, S.S., Tian, B., Liu, L., Yuan, Y.Q., Zhang, C.R.: Conservation laws, binary Darboux transformations and solitons fora higher-order nonlinear Schrödinger system. Chaos, Solitons Fractals 118, 337–346 (2019)
Nakamura, A., Ohta, Y.: Bilinear, Pfaffian and Legendre function structuresof the Tomimatsu–Sato solutions of the Ernst equation in general relativity. J. Phys. Soc. Jpn. 60, 1835–1838 (1991)
Kumar, S., Zhou, Q., Bhrawy, A.H., Zerrad, E., Biswas, A., Belic, M.: Optical solitons in birefringent fibers by Lie symmetry analysis. Rom. Rep. Phys. 68, 341–352 (2016)
Lan, Z.Z.: Periodic, breather and rogue wave solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid dynamics. Appl. Math. Lett. 94, 126–132 (2019)
Ohta, Y.: Pfaffian solution for coupled discrete nonlinear Schrödinger equation. Chaos Solitons Fractals 11, 91–95 (2000)
Wang, M., Tian, B., Sun, Y., Yin, H.M., Zhang, Z.: Mixed lump-stripe, bright rogue wave-stripe, dark rogue wave stripe and dark rogue wave solutions of a generalized Kadomtsev-Petviashvili equation in fluid mechanics. Chin. J. Phys. 60, 440–449 (2019)
Xie, X.Y., Meng, G.Q.: Collisions between the dark solitons for a nonlinear system in the geophysical fluid. Chaos, Solitons Fractals 107, 143–145 (2018)
Xie, X.Y., Meng, G.Q.: Dark solitons for a variable-coefficient AB system in the geophysical fluids or nonlinear optics. Eur. Phys. J. Plus 134, 359 (2019)
Gilson, C.R.: Generalizing the KP hierarchies: Pfaffian hierarchies. Theor. Math. Phys. 133, 1663–1674 (2002)
Ma, P.L., Tian, S.F., Zou, L., Zhang, T.T.: The solitary waves, quasi-periodic waves and integrability of a generalized fifth-order Korteweg–de Vries equation. Wave Random Complex 29, 247–263 (2019)
Peng, W.Q., Tian, S.F., Zou, L., Zhang, T.T.: Characteristics of the solitary waves and lump waves with interaction phenomena in a (2+1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Nonlinear Dyn. 93, 1841–1851 (2018)
Meng, X.H.: The periodic solitary wave solutions for the (2 + 1)-dimensional fifth-order KdV equation. J. Appl. Math. Phys. 2, 639–643 (2014)
Cao, C.W., Wu, Y.T., Geng, X.G.: On quasi-periodic solutions of the 2+1 dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Phys. Lett. A 256, 59–65 (1999)
Fang, T., Gao, C.N., Wang, H., Wang, Y.H.: Lump-type solution, rogue wave, fusion and fission phenomena for the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Mod. Phys. Lett. B 33, 1950198 (2019)
Batwa, S., Ma, W.X.: Lump solutions to a (2+1)-dimensional fifth-order KdV-like equation. Adv. Math. Phys. 2018, 2062398 (2018)
Gupta, A.K., Ray, S.S.: Numerical treatment for the solution of fractional fifth-order Sawada–Kotera equation using second kind Chebyshev wavelet method. Appl. Math. Model. 39, 5121–5130 (2015)
Liu, C.F., Dai, Z.D.: Exact soliton solutions for the fifth-order Sawada–Kotera equation. Appl. Math. Comput. 206, 272–275 (2008)
Naher, H., Abdullah, F.A., Mohyud-Din, S.T.: Extended generalized Riccati equation mapping method for the fifth-order Sawada–Kotera equation. AIP Adv. 3, 052104 (2013)
Guo, Y.F., Li, D.L., Wang, J.X.: The new exact solutions of the fifth-order Sawada–Kotera equation using three wave method. Appl. Math. Lett. 94, 232–237 (2019)
Hirota, R.: The Direct Method in Soliton Theory. Cambridge Univ. Press, Cambridge (2004)
Xu, M.J., Tian, S.F., Tu, J.M., Ma, P.L., Zhang, T.T.: Quasi-periodic wave solutions with asymptotic analysis to the Saweda–Kotera–Kadomtsev–Petviashvili equation. Eur. Phys. J. Plus 130, 174 (2015)
Furukawa, M., Tokuda, S.: Mechanism of stabilization of ballooning modes by toroidal rotation shear in tokamaks. Phys. Rev. Lett. 94, 175001 (2005)
Acknowledgements
The authors express their sincere thanks to the members of their discussion group for their valuable suggestions. This work has been supported by the National Natural Science Foundation of China under Grant No. 11772017, and by the Fundamental Research Funds for the Central Universities under Grant No. 50100002016105010.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Deng, GF., Gao, YT., Su, JJ. et al. Solitons and periodic waves for the (2 + 1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics. Nonlinear Dyn 99, 1039–1052 (2020). https://doi.org/10.1007/s11071-019-05328-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-019-05328-4