Skip to main content
Log in

Complexity and uncertainty analysis of financial stock markets based on entropy of scale exponential spectrum

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Research on complexity and uncertainty of nonlinear signals has great significance in dynamic system analysis. In order to further analyze the detailed information from the financial data to acquire deeper insight into the complex system and improve the ability of prediction, we propose the entropy of scale exponential spectrum (EOSES) as a new measure. Combined with multiscale theory, we get multiscale EOSES. The scale exponential spectrum (SES) is derived from the scale exponent of detrended fluctuation analysis. As for the entropy, we choose Rényi entropy and fractional cumulative residual entropy to compare and analyze the results. Simulated data and financial time series are used to obtain further in-depth information on the EOSES. Compared with traditional methods, we find that Rényi EOSES over moving window can provide more details of complexity which include fractal structure and scale properties. Also, it reduces the influence of degree of fitting polynomial and has higher noise immunity. In addition, through the SES and EOSES, we can better research the properties and stages of stock markets and distinguish stock markets with different characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Akbaba-Altun, S.: Complexity of integrating computer technologies into education in Turkey. J. Educ. Technol. Soc. 9(1), 176–187 (2006)

    Google Scholar 

  2. Hidalgo, Hausmann, : The building blocks of quality. Health Serv. J. 119, 15 (2009). https://doi.org/10.2307/1312923

    Google Scholar 

  3. Ma, J., Bangura, H.I.: Complexity analysis research of financial and economic system under the condition of three parameters’ change circumstances. Nonlinear Dyn. 70, 2313–2326 (2012). https://doi.org/10.1007/s11071-012-0336-z

    Google Scholar 

  4. Holzinger, A., Kickmeier-Rust, M., Albert, D.: Dynamic media in computer science education; content complexity and learning performance: is less more? Educ. Technol. Soc. 11, 279–290 (2008). https://doi.org/10.1037/a0014320

    Google Scholar 

  5. Bond, A.B., Kamil, A.C., Balda, R.P.: Social complexity and transitive inference in corvids. Anim. Behav. 65, 479–487 (2003). https://doi.org/10.1006/anbe.2003.2101

    Google Scholar 

  6. Tainter, J.A.: Social complexity and sustainability. Ecol. Complex. 3, 91–103 (2006). https://doi.org/10.1016/j.ecocom.2005.07.004

    Google Scholar 

  7. Kim, Dai-Jin, et al.: An estimation of the first positive Lyapunov exponent of the EEG in patients with schizophrenia. Psychiatry Res. Neuroimaging 98, 177–189 (2000)

    Google Scholar 

  8. Rosenstein, M.T., Collins, J.J., Luca, C.J.De: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65(65), 117–134 (1992). https://doi.org/10.1016/0167-2789(93)90009-P

    Google Scholar 

  9. Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2883374

    Google Scholar 

  10. Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/tfuzz.2019.2895560

    Google Scholar 

  11. Bialynicky-Birula, I., Mycielski, J.: Relations for information entropy in wave mechanics. Commun. Math. Phys. 44, 129–132 (1975)

    Google Scholar 

  12. Zyczkowski, K.: Rényi extrapolation of Shannon entropy. Open Syst. Inf. Dyn. 10, 297–310 (2003). https://doi.org/10.1023/A:1025128024427

    Google Scholar 

  13. Hammer, D., Romashchenko, A., Shen, A., Vereshchagin, N.: Inequalities for Shannon entropy and Kolmogorov complexity. J. Comput. Syst. Sci. 60, 442–464 (2000). https://doi.org/10.1006/jcss.1999.1677

    Google Scholar 

  14. Lin, J.: Divergence measures based on the shannon entropy. IEEE Trans. Inf. Theory 37, 145–151 (1991). https://doi.org/10.1109/18.61115

    Google Scholar 

  15. Wu, Y., Zhou, Y., Saveriades, G., Agaian, S., Noonan, J.P., Natarajan, P.: Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. (Ny) 222, 323–342 (2013). https://doi.org/10.1016/j.ins.2012.07.049

    Google Scholar 

  16. Gao, J., Hu, J., Tung, W.W.: Entropy measures for biological signal analyses. Nonlinear Dyn. 68, 431–444 (2012). https://doi.org/10.1007/s11071-011-0281-2

    Google Scholar 

  17. Szita, István, Lörincz, András: Learning Tetris using the noisy cross-entropy method. Neural Comput. 18(12), 2936–2941 (2006)

    Google Scholar 

  18. Zhai, J.hai, Xu, H.yu, Wang, X.zhao: Dynamic ensemble extreme learning machine based on sample entropy. Soft Comput. 16, 1493–1502 (2012). https://doi.org/10.1007/s00500-012-0824-6

    Google Scholar 

  19. Jia, Y., Gu, H.: Identifying nonlinear dynamics of brain functional networks of patients with schizophrenia by sample entropy. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-04924-8

    Google Scholar 

  20. McGrath, D., Yentes, J.M., Kaipust, J.P., Stergiou, N., Schmid, K.K., Hunt, N.: The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 41, 349–365 (2012). https://doi.org/10.1007/s10439-012-0668-3

    Google Scholar 

  21. Robinson, S., Cattaneo, A., El-Said, M.: Updating and estimating a social accounting matrix using cross entropy methods. Econ. Syst. Res. 13, 47–64 (2001). https://doi.org/10.1080/09535310120026247

    Google Scholar 

  22. Lenzi, E.K., Mendes, R.S., Da Silva, L.R.: Statistical mechanics based on Renyi entropy. Phys. A Stat. Mech. Appl. 280, 337–345 (2000). https://doi.org/10.1016/S0378-4371(00)00007-8

    Google Scholar 

  23. Wang, Vemuri, Chen, Rao: Cumulative residual entropy, a new measure of information. IEEE Trans. Inf. Theory 50 1, 548–553 (2005). https://doi.org/10.1109/iccv.2003.1238395

    Google Scholar 

  24. Drissi, N., Chonavel, T., Boucher, J.M.: Generalized cumulative residual entropy for distributions with unrestricted supports. Res. Lett. Signal Process. 2008, 1–5 (2008). https://doi.org/10.1155/2008/790607

    Google Scholar 

  25. Kristoufek, L.: Fractal markets hypothesis and the global financial crisis: scaling, investment horizons and liquidity. Adv. Complex Syst. (2012). https://doi.org/10.1142/S0219525912500658

    Google Scholar 

  26. Weron, A., Weron, R.: Fractal market hypothesis and two power-laws. Chaos Solitons Fractals 11, 289–296 (2000). https://doi.org/10.1016/S0960-0779(98)00295-1

    Google Scholar 

  27. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995). https://doi.org/10.1063/1.166141

    Google Scholar 

  28. Hu, K., Ivanov, P.C., Chen, Z., Carpena, P., Stanley, H.E.: Effect of trends on detrended fluctuation analysis. Phys. Rev. E 64, 19 (2001). https://doi.org/10.1103/PhysRevE.64.011114

    Google Scholar 

  29. Talkner, P., Weber, R.O.: Power spectrum and detrended fluctuation analysis: application to daily temperatures. Phys. Rev. E 62, 150–160 (2000). https://doi.org/10.1103/PhysRevE.62.150

    Google Scholar 

  30. He, L.Y., Chen, S.P.: Nonlinear bivariate dependency of pricevolume relationships in agricultural commodity futures markets: a perspective from multifractal detrended cross-correlation analysis. Phys. A Stat. Mech. Appl. 390, 297–308 (2010). https://doi.org/10.1016/j.physa.2010.09.018

    Google Scholar 

  31. Kumar, S., Deo, N.: Multifractal properties of the Indian financial market. Phys. A 388, 1593–1602 (2009). https://doi.org/10.1016/j.physa.2008.12.017

    Google Scholar 

  32. Norouzzadeh, P., Jafari, G.R.: Application of multifractal measures to Tehran price index. Phys. A Stat. Mech. Appl. 356, 609–627 (2005). https://doi.org/10.1016/j.physa.2005.02.046

    Google Scholar 

  33. Serinaldi, F.: Use and misuse of some Hurst parameter estimators applied to stationary and non-stationary financial time series. Phys. A Stat. Mech. Appl. 389, 2770–2781 (2010). https://doi.org/10.1016/j.physa.2010.02.044

    Google Scholar 

  34. Qian, B., Rasheed, K.: Hurst exponent and financial market predictability. In: Proceedings of the Second IASTED International Conference on Financial Engineering and Applications, pp. 203–209 (2004)

  35. Eom, C., Choi, S., Oh, G., Jung, W.S.: Hurst exponent and prediction based on weak-form efficient market hypothesis of stock markets. Phys. A Stat. Mech. Appl. 387, 4630–4636 (2008). https://doi.org/10.1016/j.physa.2008.03.035

    Google Scholar 

  36. Morales, R., Di Matteo, T., Gramatica, R., Aste, T.: Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series. Phys. A Stat. Mech. Appl. 391, 3180–3189 (2012). https://doi.org/10.1016/j.physa.2012.01.004

    Google Scholar 

  37. Grech, D., Pamuła, G.: The local Hurst exponent of the financial time series in the vicinity of crashes on the Polish stock exchange market. Phys. A Stat. Mech. Appl. 387, 4299–4308 (2008). https://doi.org/10.1016/j.physa.2008.02.007

    Google Scholar 

  38. Movahed, M.S., Jafari, G.R., Ghasemi, F., Rahvar, S., Tabar, M.R.R.: Multifractal detrended fluctuation analysis of sunspot time series. J. Stat. Mech. Theory Exp. (2006). https://doi.org/10.1088/1742-5468/2006/02/P02003

    Google Scholar 

  39. Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, H.E.: Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A Stat. Mech. Appl. 316, 87–114 (2002). https://doi.org/10.1016/S0378-4371(02)01383-3

    Google Scholar 

  40. Machado, J.A.T., Galhano, A.M.S.F., Trujillo, J.J.: On development of fractional calculus during the last fifty years. Scientometrics 98, 577–582 (2014). https://doi.org/10.1007/s11192-013-1032-6

    Google Scholar 

  41. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. arXiv preprint arXiv:0805.3823 (2008)

  42. Machado, J.T.: Fractional order generalized information. Entropy 16, 2350–2361 (2014). https://doi.org/10.3390/e16042350

    Google Scholar 

  43. Costa, M., Peng, C.K., Goldberger, A.L., Hausdorff, J.M.: Multiscale entropy analysis of human gait dynamics. Phys. A Stat. Mech. Appl. 330, 53–60 (2003). https://doi.org/10.1016/j.physa.2003.08.022

    Google Scholar 

  44. Alvarez-Ramirez, J., Rodriguez, E., Echeverría, J.C.: Detrending fluctuation analysis based on moving average filtering. Phys. A Stat. Mech. Appl. 354, 199–219 (2005). https://doi.org/10.1016/j.physa.2005.02.020

    Google Scholar 

  45. Xiong, H., Shang, P.: Weighted multifractal cross-correlation analysis based on Shannon entropy. Commun. Nonlinear Sci. Numer. Simul. 30, 268–283 (2016). https://doi.org/10.1016/j.cnsns.2015.06.029

    Google Scholar 

  46. Panas, E.: Estimating fractal dimension using stable distributions and exploring long memory through ARFIMA models in Athens stock exchange. Appl. Financ. Econ. 11, 395–402 (2001). https://doi.org/10.1080/096031001300313956

    Google Scholar 

  47. Leite, A., Rocha, A.P., Silva, M.E., Gouveia, S., Carvalho, J., Costa, O.: Long-range dependence in heart rate variability data: ARFIMA modelling vs detrended fluctuation analysis. Comput. Cardiol. 34, 21–24 (2007). https://doi.org/10.1109/CIC.2007.4745411

    Google Scholar 

Download references

Acknowledgements

The financial support from the Fundamental Research Funds for the Central Universities (Grant No. 2018JBZ104) and the National Natural Science Foundation of China (Grant No. 61771035) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Shang, P. Complexity and uncertainty analysis of financial stock markets based on entropy of scale exponential spectrum. Nonlinear Dyn 98, 2147–2170 (2019). https://doi.org/10.1007/s11071-019-05314-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05314-w

Keywords

Navigation