Skip to main content
Log in

Uncertainty observation-based adaptive succinct fuzzy-neuro dynamic surface control for trajectory tracking of fully actuated underwater vehicle system with input saturation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an uncertainty observation-based adaptive fuzzy neural dynamic surface control (UOB-AFNDSC) is proposed to investigate the problem of high-accuracy trajectory tracking of fully actuated underwater vehicles with respect to unknown uncertainties and input saturation. The control framework of UOB-AFNDSC is constructed using the dynamic surface technique, under which an online-succinct fuzzy-neuro uncertainty observer with both projection-based parameter learning and succinct network structure learning is constructed to online identify the lumped uncertainty term including system uncertainties and external disturbances. To further suppress the effect of uncertainty reconstruction error and input saturation error, two adaptive robust terms are introduced, respectively. To theoretically analyze the stability of the overall closed-loop control system, novel error variables are introduced to ensure the uniform ultimate boundedness of all signals, and the tracking accuracy can be easily adjusted by the width parameter of novel error variables. Finally, some simulations are carried out to demonstrate the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fossen, T.I.: Marine Control Systems: Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics AS, Trondheim (2002)

    Google Scholar 

  2. Schoenwald, D.A.: AUVs: in space, air, water, and on the ground. IEEE Control Syst. Mag. 20, 15–18 (2002)

    Google Scholar 

  3. Cui, R., Zhang, X., Cui, D.: Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities. Ocean Eng. 123, 45–54 (2016)

    Article  Google Scholar 

  4. Kuipers, M., Ioannou, P.: Multiple model adaptive control with mixing. IEEE Trans. Autom. Control 55(8), 1822–1836 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Peng, Z., Wang, J.: Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks. IEEE Trans. Syst. Man Cybern. Syst. 48(4), 535–544 (2017)

    Article  MathSciNet  Google Scholar 

  6. Cui, R., Yang, C., Li, Y., et al.: Adaptive neural network Control of AUVs with control input nonlinearities using reinforcement learning. IEEE Trans. Syst. Man Cybern. Syst. 47(6), 1019–1029 (2017)

    Article  Google Scholar 

  7. Zhang, M.J., Chu, Z.Z.: Adaptive sliding mode control based on local recurrent neural networks for underwater robot. Ocean Eng. 45, 56–62 (2013)

    Article  Google Scholar 

  8. Bessa, W.M., Dutra, M.S., Kreuzer, E.: An adaptive fuzzy sliding mode controller for remotely operated underwater vehicles. Robot. Autonom. Syst. 58(1), 16–26 (2013)

    Article  Google Scholar 

  9. Tian, B.L., Liu, L.H., Lu, H.C., Zuo, Z.Y., Zong, Q., Zhang, Y.P.: Multivariable finite time attitude control for quadrotor UAV: theory and experimentation. IEEE Trans. Ind. Electron. 65(3), 2567–2577 (2018)

    Article  Google Scholar 

  10. Tian, B.L., Lu, H.C., Zuo, Z.Y., Yang, W.: Fixed-time leader–follower output feedback consensus for second-order multi-agent systems. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2794759

    Article  Google Scholar 

  11. Tian, B.L., Zuo, Z.Y., Yan, X.M., Wang, H.: A fixed-time output feedback control scheme for double integrator systems. Automatica 80, 17–24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, N., Pan, X.: Path-following of autonomous underactuated ships: a translation-rotation cascade control approach. IEEE/ASME Trans. Mechatron. (2019). https://doi.org/10.1109/TMECH.2019.2932205

    Article  Google Scholar 

  13. Wang, N., Deng, Z.: Finite-time fault estimator based fault-tolerance control for a surface vehicle with input saturations. IEEE Trans. Ind. Inf. (2019). https://doi.org/10.1109/TII.2019.2930471

    Article  Google Scholar 

  14. Wang, N., Sun, Z., Jiao, Y., Han, G.: Surge-heading guidance based finite-time path-following of underactuated marine vehicles. IEEE Trans. Veh. Technol. (2019). https://doi.org/10.1109/TVT.2019.2927893

    Article  Google Scholar 

  15. Wang, N., Karimi, H.R.: Successive waypoints tracking of an underactuated surface vehicle. IEEE Trans. Ind. Inf. (2019). https://doi.org/10.1109/TII.2019.2922823

    Article  Google Scholar 

  16. Wang, N., Karimi, H.R., Li, H., Su, S.-F.: Accurate trajectory tracking of disturbed surface vehicles: a finite-time control approach. IEEE/ASME Trans. Mechatron. 24(3), 1064–1074 (2019)

    Article  Google Scholar 

  17. Wang, N., Xie, G., Pan, X., Su, S.-F.: Full-state regulation control of asymmetric underactuated surface vehicles. IEEE Trans. Ind. Electron. (2019). https://doi.org/10.1109/TIE.2018.2890500

    Article  Google Scholar 

  18. Wang, N., Su, S.-F., Pan, X., Yu, X., Xie, G.: Yaw-guided trajectory tracking control of an asymmetric underactuated surface vehicle. IEEE Trans. Ind. Inf. 15(6), 3502–3513 (2019)

    Article  Google Scholar 

  19. Conte, G., Serrani, A.: Global robust tracking with disturbance attenuation for unmanned underwater vehicles. In: IEEE International Conference on Control Applications, pp. 1094–1098 (1998)

  20. Antonelli, G., Chiaverini, S., Sarkar, N., West, M.: Adaptive control of an autonomous underwater vehicle: experimental results on ODIN. IEEE Trans. Control Syst. Technol. 9(5), 756–765 (2001)

    Article  Google Scholar 

  21. Antonelli, G., Caccavale, F., Chiaverini, S.: A novel adaptive control law for underwater vehicles. IEEE Trans. Control Syst. Technol. 11(2), 221–232 (2003)

    Article  Google Scholar 

  22. Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yoo, S.J., Park, J.B.: Neural-network-based decentralized adaptive control for a class of large-scale nonlinear systems with unknown time varying delays. IEEE Trans. Syst. Man Cybern. B Cybern. 39(5), 1316–1323 (2009)

    Article  Google Scholar 

  24. Wang, M., Liu, X., Shi, P.: Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique. IEEE Trans. Syst. Man Cybern. B Cybern. 41(6), 1681–1692 (2009)

    Article  Google Scholar 

  25. Li, J., Gao, H., Zhou, J., Yan, Z.: Dynamic surface and active disturbance rejection control for path following of an underactuated UUV. J. Appl. Math. 2014(9), 1–9 (2014)

    MATH  Google Scholar 

  26. Niu, B., Li, H., Qin, T.: Adaptive NN dynamic surface controller design for nonlinear pure-feedback switched systems with time-delays and quantized input. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–13 (2017)

    Google Scholar 

  27. Niu, B., Li, L.: Adaptive backstepping-based neural tracking control for MIMO nonlinear switched systems subject to input delays. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2638–2644 (2017)

    Article  MathSciNet  Google Scholar 

  28. Liu, S.Y., Liu, Y.C., Wang, N.: Nonlinear disturbance observer-based backstepping finite-time sliding mode tracking control of underwater vehicles with system uncertainties and external disturbances. Nonlinear Dyn. 88(1), 465–476 (2017)

    Article  MATH  Google Scholar 

  29. Guerrero, J., Torres, J., Creuze, V., Chemori, A.: Observation-based nonlinear proportional-derivative control for robust trajectory tracking for autonomous underwater vehicles. IEEE J. Ocean. Eng. PP(99), 1–13 (2019)

    Article  Google Scholar 

  30. Lamroaui, H.C., Qidan, Z.: Path following control of fully-actuated autonomous underwater vehicle in presence of fast-varying disturbances. Appl. Ocean Res. 86, 40–46 (2019)

    Article  Google Scholar 

  31. Peng, Z., Wang, J., Han, Q.-L.: Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization. IEEE Trans. Ind. Electron. 66, 8724–8732 (2019)

    Article  Google Scholar 

  32. Yang, X., Yan, J., Hua, C., Guan, X.: Trajectory tracking control of autonomous underwater vehicle with unknown parameters and external disturbances. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2894171

    Article  Google Scholar 

  33. Liu, X., Zhang, M., Wang, Y., Rogers, E.: Design and experimental validation of an adaptive sliding mode observer-based fault-tolerant control of underwater vehicles. IEEE Trans. Control Syst. Technol. (2018). https://doi.org/10.1109/TCST.2018.2870829

    Article  Google Scholar 

  34. Yan, Y., Yu, S.: Siliding mode tracking control of autonomous underwater vehicles with the effect of quantization. Ocean Eng. 151, 322–328 (2018)

    Article  Google Scholar 

  35. Zhang, Z., Liang, H., Wu, C., Ahn, C.K.: Adaptive event-triggered output feedback fuzzy control for nonlinear networked systems with packet dropouts and actuator failure. IEEE Trans. Fuzzy Syst. 27(9), 1793–1806 (2019)

    Article  Google Scholar 

  36. Fei, Z., Shi, S., Wang, T., Ahn, C.K.: Improved stability criteria for discrete-time switched T–S fuzzy systems. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2018.2882630

    Article  Google Scholar 

  37. Gao, Y., Er, M.J.: Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 11(4), 462–477 (2003)

    Article  Google Scholar 

  38. Chen, C.S.: Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators. IEEE Trans. Ind. Electron. 55(9), 3402–3414 (2008)

    Article  Google Scholar 

  39. Chen, C.S.: Robust self-organizing neural-fuzzy control with uncertainty observer for MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 19(4), 649–706 (2011)

    Google Scholar 

  40. Liu, S., Liu, Y., Wang, N.: Robust adaptive self-organizing neuro-fuzzy tracking control of UUV with system uncertainties and unknown dead-zone nonlinearity. Nonlinear Dyn. 89(2), 1397–1414 (2017)

    Article  MATH  Google Scholar 

  41. Liu, Y.C., Liu, S.Y., Wang, N.: Fully-tuned fuzzy neural network based robust adaptive tracking control of unmanned underwater vehicle with thruster dynamics. Neurocomputing 196, 1–13 (2016)

    Article  Google Scholar 

  42. Xia, G., Pang, C., Xue, J.: Fuzzy neural network-based robust adaptive control for dynamic positioning of underwater vehicles with input dead-zone. Int. J. Intell. Fuzzy Syst. 29(6), 2585–2595 (2015)

    MATH  Google Scholar 

  43. He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 46(3), 334–344 (2016)

    Article  Google Scholar 

  44. Kim, D.W.: Tracking of REMUS autonomous underwater vehicles with actuator saturations. Automatica 58, 15–21 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sarhadi, P., Noei, A.R., Khosravi, A.: Adaptive \(\mu \)-modification control for a nonlinear autonomous underwater vehicle in the presence of actuator saturation. Int. J. Dyn. Control 5(3), 596–603 (2017)

    Article  MathSciNet  Google Scholar 

  46. Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005)

    Article  Google Scholar 

  47. Tong, S.C., Li, Y.M., Feng, G., Li, T.S.: Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Trans. Syst. Man Cybern. 41(4), 1124–1135 (2011)

    Article  Google Scholar 

  48. Fossen, T.I.: Guidance and Control of Ocean Vehicles. Wiley, New York (1994)

    Google Scholar 

  49. Chang, Y.H., Chan, W.S., Chang, C.W., Tao, C.W.: Adaptive fuzzy dynamic surface control for ball and beam system. Int. J. Fuzzy Syst. 13(1), 1–7 (2011)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of PR China (under Grant 51479018) and Fundamental Research Funds for the Central Universities of PR China (under Grant 3132016335).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siyuan Liu, Yancheng Liu or Ning Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, Y., Liang, X. et al. Uncertainty observation-based adaptive succinct fuzzy-neuro dynamic surface control for trajectory tracking of fully actuated underwater vehicle system with input saturation. Nonlinear Dyn 98, 1683–1699 (2019). https://doi.org/10.1007/s11071-019-05279-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05279-w

Keywords

Navigation