Abstract
Real-world networks are rarely isolated; rather, they constitute a large number of elements interacting through complex topologies and oscillation is essential for their proper functioning. But degradation may come up naturally in such large systems that can severely affect the dynamical activity of the entire network. This mandates us to prescribe some remedies to overcome such deterioration. In this work, we demonstrate this scenario using a neuronal model organized in a framework of multiplex structure composed of a mixture of active and inactive neurons, while interacting via both electrical gap junction and chemical synapse. Multiplex architecture being very much prominent in cortical networks, we explore the simultaneous effect of the electrical and chemical synapses in the persistence of global rhythmicity of a multiplex neuronal network. Our results suggest that although electrical synapse reduces the dynamical performance of the network, chemical synapse through interlayer connection is highly efficient in reviving the rhythmicity of the network. Moreover, we investigate the effect of demultiplexing on the resilience of the network and show that chemical synaptic coupling can revive global rhythmicity under progressive demultiplexing as well. We also demonstrate this effectiveness of the chemical synapses for the case of reverse transition from global rest state to dynamism.
This is a preview of subscription content, access via your institution.









References
Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Science. Cambridge University Press, Cambridge (2003)
Strogatz, S.H.: Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life. Hyperion, New York (2004)
Ghosh, D., Bhattacharya, S.: Projective synchronization of new hyperchaotic system with fully unknown parameters. Nonlinear Dyn. 61, 11–21 (2010)
Yao, Z., Ma, J., Yao, Y., Wang, C.: Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonlinear Dyn. 96, 205–217 (2019)
Majhi, S., Ghosh, D., Kurths, J.: Emergence of synchronization in multiplex networks of mobile Rössler oscillators. Phys. Rev. E 99, 012308 (2019)
Panaggio, M.J., Abrams, D.M.: Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28, R67 (2015)
Majhi, S., Bera, B.K., Ghosh, D., Perc, M.: Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100 (2019)
Koseka, A., Volkov, E., Kurths, J.: Oscillation quenching mechanisms: amplitude vs. oscillation death. Phys. Rep. 531, 173 (2013)
Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)
Cohen, R., Erez, K., ben-Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626 (2000)
Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025 (2010)
Vespignani, A.: Complex networks: the fragility of interdependency. Nature 464, 984 (2010)
Gao, J., Barzel, B., Barabási, A.-L.: Universal resilience patterns in complex networks. Nature 530, 307–312 (2016)
Daido, H., Nakanishi, K.: Aging transition and universal scaling in oscillator networks. Phys. Rev. Lett. 93, 104101 (2004)
Daido, H., Nakanishi, K.: Aging and clustering in globally coupled oscillators. Phys. Rev. E 75, 056206 (2007)
Morino, K., Tanaka, G., Aihara, K.: Robustness of multilayer oscillator networks. Phys. Rev. E 83, 056208 (2011)
Tanaka, G., Morino, K., Aihara, K.: Dynamical robustness in complex networks: the crucial role of low-degree nodes. Sci. Rep. 2, 232 (2012)
Tanaka, G., Morino, K., Daido, H., Aihara, K.: Dynamical robustness of coupled heterogeneous oscillators. Phys. Rev. E 89, 052906 (2014)
Thakur, B., Sharma, D., Sen, A.: Time-delay effects on the aging transition in a population of coupled oscillators. Phys. Rev. E 90, 042904 (2014)
Sasai, T., Morino, K., Tanaka, G., Almendral, J.A., Aihara, K.: Robustness of oscillatory behavior in correlated networks. PLoS ONE 10, e0123722 (2015)
Ranta, E., Fowler, M.S., Kaitala, V.: Population synchrony in small-world networks. Proc. R. Soc. B 275, 435 (2008)
Gilarranz, L.J., Bascompte, J.: Spatial network structure and metapopulation persistence. J. Theor. Biol. 297, 11 (2012)
Kundu, S., Majhi, S., Sasmal, S.K., Ghosh, D., Rakshit, B.: Survivability of a metapopulation under local extinctions. Phys. Rev. E 96, 062212 (2017)
Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)
Ge, M., Jia, Y., Kirunda, J.B., Xu, Y., Shen, J., Lu, L., Liu, Y., Pei, Q., Zhan, X., Yang, L.: Propagation of firing rate by synchronization in a feed-forward multilayer Hindmarsh–Rose neural network. Neurocomputing 320, 60–68 (2018)
Lu, L., Jia, Y., Kirunda, J.B., Xu, Y., Ge, M., Pei, Q., Yang, L.: Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn. 95, 1673–1686 (2019)
Xu, Y., Jia, Y., Wang, H., Liu, Y., Wang, P., Zhao, Y.: Spiking activities in chain neural network driven by channel noise with field coupling. Nonlinear Dyn. 95, 3237–3247 (2019)
Ge, M., Jia, Y., Xu, Y., Lu, L., Wang, H., Zhao, Y.: Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network. Appl. Math. Comput. 352, 136–145 (2019)
Lisman, J., Buzsáki, G.: A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr. Bull. 34, 974–980 (2008)
Jalife, J., Gray, R.A., Morley, G.E., Davidenko, J.M.: Self-organization and the dynamical nature of ventricular fibrillation. Chaos 8, 79 (1998)
Engel, A.K., Singer, W.: Temporal binding and the neural correlates of sensory awareness. Trends Cogn. Sci. 5, 16–25 (2001)
Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229 (2001)
Burrow, T.: The neurodynamics of behavior: a phylobiological foreword. Philos. Sci. 10, 271–288 (1943)
Ma, J., Yang, Z., Yang, L., Tang, J.: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. A 20, 639–659 (2019)
Xu, Y., Ying, H., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)
Ma, J., Zhang, G., Hayat, T., Ren, G.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95, 1585–1598 (2019)
Xu, Y., Jia, Y., Ma, J., Hayat, T., Alsaedi, A.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8, 1349 (2018)
Rakshit, S., Ray, A., Bera, B.K., Ghosh, D.: Synchronization and firing patterns of coupled Rulkov neuronal map. Nonlinear Dyn. 94, 785–805 (2018)
Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)
Levanova, T.A., Kazakov, A.O., Osipov, G.V., Kurths, J.: Dynamics of ensemble of inhibitory coupled Rulkov maps. Eur. Phys. J. Spec. Top. 225, 147–157 (2016)
Korotkov, A.G., Kazakov, A.O., Levanova, T.A., Osipov, G.V.: The dynamics of ensemble of neuron-like elements with excitatory couplings. Commun. Nonlinear Sci. Numer. Simul. 71, 38–49 (2019)
Morino, K., Tanaka, G., Aihara, K.: Efficient recovery of dynamic behavior in coupled oscillator networks. Phys. Rev. E 88, 032909 (2013)
Liu, Y., Zou, W., Zhan, M., Duan, J., Kurths, J.: Enhancing dynamical robustness in aging networks of coupled nonlinear oscillators. Europhys. Lett. 114, 40004 (2016)
Sun, Z., Ma, N., Xu, W.: Aging transition by random errors. Sci. Rep. 7, 42715 (2017)
Kundu, S., Majhi, S., Ghosh, D.: Resumption of dynamism in damaged networks of coupled oscillators. Phys. Rev. E 97, 052313 (2018)
Bera, B.K.: Low pass filtering mechanism enhancing dynamical robustness in coupled oscillatory networks. Chaos 29, 041104 (2019)
Kundu, S., Majhi, S., Karmakar, P., Ghosh, D., Rakshit, B.: Augmentation of dynamical persistence in networks through asymmetric interaction. Europhys. Lett. 123, 30001 (2018)
Boccaletti, S., Bianconi, G., Criado, R., del Genio, C.I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014)
Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2, 203–271 (2014)
Domenico, M.D., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M.A., Gómez, S., Arenas, A.: Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013)
Nicosia, V., Bianconi, G., Latora, V., Barthelemy, M.: Growing multiplex networks. Phys. Rev. Lett. 111, 058701 (2013)
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821 (2002)
Cardillo, A., Zanin, M., Gómez-Gardeñes, J., Romance, M., Garcia del Amo, A., Boccaletti, S.: Modeling the multi-layer nature of the European air transport network: resilience and passengers re-scheduling under random failures. Eur. Phys. J. Spec. Top. 215, 23 (2013)
Brummitt, C.D., D’Souza, R.M., Leicht, E.A.: Suppressing cascades of load in interdependent networks. Proc. Natl. Acad. Sci. USA 109, E680 (2012)
Pilosof, S., Porter, M.A., Pascual, M., Kéfi, S.: The multilayer nature of ecological networks. Nat. Ecol. Evol. 1, 0101 (2017)
Bentley, B., Branicky, R., Barnes, C.L., Chew, Y.L., Yemini, E., Bullmore, E.T., Vtes, P.E., Schafer, W.R.: The multilayer connectome of Caenorhabditis elegans. PLoS Comput. Biol. 12, e1005283 (2016)
Battiston, F., Nicosia, V., Chavez, M., Latora, V.: Multilayer motif analysis of brain networks. Chaos 27, 047404 (2017)
Pereda, A.E.: Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250 (2014)
Rakshit, S., Bera, B.K., Ghosh, D.: Synchronization in a temporal multiplex neuronal hypernetwork. Phys. Rev. E 98, 032305 (2018)
Rakshit, S., Majhi, S., Bera, B.K., Sinha, S., Ghosh, D.: Time-varying multiplex network: intralayer and interlayer synchronization. Phys. Rev. E 96, 062308 (2017)
Rakshit, S., Bera, B.K., Ghosh, D., Sinha, S.: Emergence of synchronization and regularity in firing patterns in time-varying neural hypernetworks. Phys. Rev. E 97, 052304 (2018)
Majhi, S., Perc, M., Ghosh, D.: Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos 27, 073109 (2017)
Majhi, S., Kapitaniak, T., Ghosh, D.: Solitary states in multiplex networks owing to competing interactions. Chaos 29, 013108 (2019)
Bassett, D.S., Bullmore, E.T.: Small-world brain networks. Neuroscientist 12, 512 (2006)
Bassett, D.S., Bullmore, E.T.: Small-world brain networks revisited. Neuroscientist 23, 499 (2017)
Sporns, O., Honey, C.J.: Small worlds inside big brains. Proc. Natl. Acad. Sci. USA 103, 19219 (2006)
Hilgetag, C.C., O’Neill, M.A., Young, M.P.: Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 71 (2000)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature (London) 393, 440 (1998)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kundu, S., Majhi, S. & Ghosh, D. Chemical synaptic multiplexing enhances rhythmicity in neuronal networks. Nonlinear Dyn 98, 1659–1668 (2019). https://doi.org/10.1007/s11071-019-05277-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-019-05277-y
Keywords
- Neuronal systems
- Multiplex networks
- Dynamical robustness