Skip to main content
Log in

Qualitative analysis of a diffusive Crowley–Martin predator–prey model: the role of nonlinear predator harvesting

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we discuss a diffusive predator–prey system with mutually interfering predator and nonlinear harvesting in predator with Crowley–Martin functional response. The mathematical analysis of the system starts with the existence and uniqueness of solution of the system using \(C_0\) semigroup. The analysis reflects that the upper bound of rate of predator harvesting for the coexistence of the species can be guaranteed. In addition, we establish the existence and nonexistence of non-constant positive steady state. Explicit conditions on predator harvesting are obtained for local and global stability of interior equilibrium and also for the existence and nonexistence of non-constant steady-state solution. We also investigate conditions for Turing instabilities of the diffusive system analytically. Our results show that the effort of harvesting (g) provides a threshold value for existence of non-constant positive stationary solution. Furthermore, we illustrate the spatial patterns via numerical simulations, which show that the system exhibits interesting patterns. Some biological implications of obtained theoretical results have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Clark, C.W.: Mathematical Bioeconomics, the Optimal Management of Renewable Resources. Wiley, New York (1976)

    MATH  Google Scholar 

  2. Berryman, A.A.: The origin and evolution of predator–prey theory. Ecology 73(5), 1530–1535 (1992)

    Google Scholar 

  3. Smith, J.: Models in Ecology. Cambridge University Press, Cambridge (1974)

    MATH  Google Scholar 

  4. Lotka, A.: Elements of Mathematical Biology. Dover, New York (1956)

    MATH  Google Scholar 

  5. Holling, C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959)

    Google Scholar 

  6. Ruan, S., Xiao, D.: Global analysis in a predator–prey system with non-monotonic functional response. SIAM J. Appl. Math. 61(4), 1445–1472 (2001)

    MATH  Google Scholar 

  7. Sun, G.-Q., Wu, Z.-Y., Jin, Z., Wang, Z.: Influence of isolation degree of spatial patterns on persistence of populations. Nonlinear Dyn. 83, 811–819 (2016)

    MathSciNet  Google Scholar 

  8. Hassell, M.P.: Mutual interference between searching insect parasites. J. Anim. Ecol. 40, 473–486 (1971)

    Google Scholar 

  9. Jana, D., Tripathi, J.P.: Impact of generalist type sexually reproductive top predator interference on the dynamics of a food chain model. In. J. Dyn. Control 5, 999–1009 (2017)

    MathSciNet  Google Scholar 

  10. Crowley, P.H., Martin, E.K.: Functional responses and interference within and between year classes of a dragonfly population. J. N. Am. Benthol. Soc. 8, 211–221 (1989)

    Google Scholar 

  11. Dubey, B., Chandra, P., Sinha, P.: A model for fishery resource with reserve area. Nonlinear Anal. Real World Appl. 4, 625–637 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Chattopadhyay, J., Bairagi, N., Sarkar, R.R.: A prey–predator model with some cower on prey species. Nonlinear Phenom. Complex Syst. 3(4), 407–420 (2004)

    Google Scholar 

  13. Tripathi, J.P., Abbas, S., Thakur, M.: Dynamical analysis of a prey–predator model with Beddington–DeAngelis type function response incorporating a prey refuge. Nonlinear Dyn. 80, 177–196 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Verma, M., Mishra, A.K.: Modeling the effect of prey refuge on a ratio dependent predator–prey system with the Allee effect. Bull. Math. Biol. 80, 626–656 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie–Gower predator–prey model with Michaelis–Menten type prey harvesting. J. Math. Anal. Appl. 398, 278–295 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Dai, G., Tang, M.: Coexistence region and Global dynamics of a harvested predator–prey system. SIAM J. Appl. Math. 58(1), 193–210 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Annik, M., Ruan, S.: Predator–prey models with delay and prey harvesting. J. Math. Biol. 43(3), 247–267 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Kar, T.K., Ghorai, A.: Dynamic behaviour of a delayed predator–prey model with harvesting. Appl. Math. Comput. 217, 9085–9104 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Brauer, F., Soudack, A.C.: Stabiiity regions in predator–prey systems with constant-rate prey hiuvesthg. J. Math. Biol. 8, 55–71 (1979)

    MathSciNet  MATH  Google Scholar 

  20. Xiao, D., Jennings, L.S.: Bifurcations of a ratio-dependent predator–prey system with constant rate harvesting. SIAM J. Appl. Math. 65(3), 737–753 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Song, X.Y., Chen, L.S.: Optimal harvesting and stability with stage-structure for a two species competitive system. Math. Biosci. 170, 173–186 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Clark, C.W.: Mathematical models in the economics of renewable resources. SIAM Rev. 21, 81–89 (1979)

    MathSciNet  MATH  Google Scholar 

  23. Krishna, S.V., Srinivasu, P.D.N., Kaymakcalan, B.: Conservation of an ecosystem through optimal taxation. Bull. Math. Biol. 60(3), 569–584 (1998)

    MATH  Google Scholar 

  24. Hirsch, H.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, London (2012)

    MATH  Google Scholar 

  25. Brauer, F., Castilo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, New York (2012)

    MATH  Google Scholar 

  26. Kar, T.K., Pahari, U.K.: Modelling and analysis of a prey–predator system with stage-structure and harvesting. Nonlinear Anal. Real World Appl. 8, 601–609 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Liu, X., Meng, J.: The positive almost periodic solution for Nicholson-type delay systems with linear harvesting terms. Appl. Math. Model. 36, 3289–3298 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Clark, C.W., Mangel, M.: Aggregation and fishery dynamics: atheoretical study of schooling and the purseseine tuna fisheries. Fish. Bull. 77, 317–337 (1979)

    Google Scholar 

  29. Liu, W., Jiang, Y.: Bifurcation of a delayed Gause predator–prey model with Michaelis–Menten type harvesting. J. Theor. Biol 438, 116–132 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Das, T., Mukherjee, R.N., Chaudhari, K.S.: Bioeconomic harvesting of a prey–predator fishery. J. Biol. Dyn. 3, 447–462 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Hu, D., Cao, H.: Stability and bifurcation analysis in a predator–prey system with Michaelis–Menten type predator harvesting. Nonlinear Anal. Real World Appl. 33, 58–82 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Yang, R., Zhang, C., Zhang, Y.: A delayed diffusive predator–prey system with Michaelis–Menten type predator harvesting. Int. J. Bifurc. Chaos 28, 1850099 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Arditi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)

    Google Scholar 

  34. Banerjee, M., Banerjee, S.: Turing instabilities and spatio-temporal chaos in ratio-dependent Holling–Tanner model. Math. Biosci. 236, 64–76 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Banerjee, M., Abbas, S.: Existence and non-existence of spatial patterns in a ratio-dependent predator–prey model. Ecol. Complex. 21, 199–214 (2015)

    Google Scholar 

  36. Beddington, J.R.: Mutual interference between parasites or predators and it’s effect on searching efficiency. J. Anim. Ecol. 44(1), 331–340 (1975)

    Google Scholar 

  37. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for tropic interaction. Ecol. Soc. Am. 56(4), 881–892 (1975)

    Google Scholar 

  38. Tripathi, J.P., Abbas, S., Thakur, M.: A density dependent delayed predator–prey model with Beddington–DeAngelis type function response incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 22, 427–450 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Sklaski, G.T., Gilliam, J.F.: Functional responses with predator interference: viable alternative to Holling type II model. Ecology 82(11), 3083–3092 (2001)

    Google Scholar 

  40. Tripathi, J.P., Tyagi, S., Abbas, S.: Global analysis of a delayed density dependent predator–prey model with Crowley–Martin functional response. Commun. Nonlinear Sci. Numer. Simul. 30, 45–69 (2016)

    MathSciNet  Google Scholar 

  41. Parshad, R.D., Basheer, A., Jana, D., Tripathi, J.P.: Do prey handling predators really matter: subtle effects of a Crowley–Martin functional response. Chaos Solitons Fract. 103, 410–421 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Upadhyay, R.K., Raw, S.N., Rai, V.: Dynamic complexities in a tri-trophic food chain model with Holling type II and Crowley–Martin functional response. Nonlin. Anal. Model. Control 15(3), 361–375 (2010)

    MATH  Google Scholar 

  43. Tripathi, J.P.: Almost periodic solution and global attractivity for a density dependent predator–prey system with mutual interference and Crowley–Martin response function. Differ. Equ. Dyn. Syst. (2016). https://doi.org/10.1007/s12591-016-0298-6

  44. Neuhauser, C.: Mathematical challenges in spatial ecology. Not. Am. Math. Soc. 48, 1304–1314 (2001)

    MathSciNet  MATH  Google Scholar 

  45. Cantrell, R.S., Cosner, C.: Spatial Ecology Via Reaction–Diffusion Equations. Wiley, West Sussex (2003)

    MATH  Google Scholar 

  46. Guan, X., Wang, W., Cai, Y.: Spatiotemporal dynamics of a Leslie–Gower predator–prey model incorporating a prey refuge. Nonlinear Anal. Real World Appl. 12, 2385–2395 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Du, Y.-H., Shi, J.-P.: A diffusive predator–prey model with a protection jone. J. Differ. Equ. 229(1), 63–91 (2006)

    MATH  Google Scholar 

  48. Ni, W., Wang, M.: Dynamics and patterns of a diffusive Leslie–Gower prey–predator model with strong Allee effect in prey. J. Differ. Equ. 261(7), 4244–4274 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Yin, H., Xiao, X., Wen, X., Liu, K.: Pattern analysis of a modified Leslie–Gower predator–prey model with Crowley–Martin functional response and diffusion. Comput. Math. Appl. 67, 1607–1621 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Lou, Y., Zhou, P.: Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions. J. Differ. Equ. 259, 141–171 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Banarjee, M., Petrovskii, S.: Self-organized spatial pattern and chaos in a ratio dependent predator–prey system. Theor. Ecol. 4, 37–53 (2011)

    Google Scholar 

  52. Sun, G.-Q., Chakraborty, A., Liu, Q.X., Jin, Z., Anderson, K.E., Li, B.L.: Influence of time delay and nonlinear diffusion on herbivore outbreak. Commun. Nonlinear Sci. Numer. Simul. 19(5), 1507–1518 (2014)

    MathSciNet  Google Scholar 

  53. Tripathi, J.P., Abbas, S., Sun, G.-Q., Jana, D., Wang, C.-H.: Interaction between prey and mutually interfering predator in prey reserve habitat: pattern formation and the Turing–Hopf bifurcation. J. Frankl. Inst. 355(15), 7466–7489 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Li, L., Jin, Z., Li, J.: Periodic solutions in a herbivore-plant system with time delay and spatial diffusion. Appl. Math. Model. 40, 4765–4777 (2016)

    MathSciNet  Google Scholar 

  55. Ni, W., Wang, M.: Dynamics and patterns of a diffusive Leslie–Gower prey–predator model with strong Allee effect in prey. J. Differ. Equ. 261, 4244–4274 (2016)

    MathSciNet  MATH  Google Scholar 

  56. Sun, G.-Q., Wang, C.-H., Wu, Z.-Y.: Pattern dynamics of a Gierer–Meinhardt model with spatial effects. Nonlinear Dyn. 88, 1385–1396 (2017)

    Google Scholar 

  57. Chen, S., Yu, J.: Dynamics of a diffusive predator–prey system with a nonlinear growth rate for the predator. J. Differ. Equ. 260, 7923–7939 (2016)

    MathSciNet  MATH  Google Scholar 

  58. Zhang, X.C., Sun, G.-Q., Jin, Z.: Spatial dynamics in a predator–prey model with Beddington–DeAngelis functional response. Phys. Rev. E 85(2), 021924 (2012)

    Google Scholar 

  59. Sun, G.-Q.: Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 85, 1–12 (2016)

    MathSciNet  Google Scholar 

  60. Du, Y., Peng, R., Wang, M.: Effect of a protection zone in the diffusive Leslie predator–prey model. J. Differ. Equ. 246, 3932–3956 (2009)

    MathSciNet  MATH  Google Scholar 

  61. Rodrigues, L.A.D., Mistro, D.C., Petrovskii, S.: Pattern formation, long-term transients, and the Turing–Hopf bifurcation in a space-and time-discrete predator–prey system. Bull. Math. Biol. 73(8), 1812–1840 (2011)

    MathSciNet  MATH  Google Scholar 

  62. Cantrell, R.S., Cosner, C., Lou, Y.: Approximating the ideal free distribution via reaction–diffusion–advection equations. J. Differ. Equ. 245, 3687–3703 (2008)

    MathSciNet  MATH  Google Scholar 

  63. Sun, G.-Q., Wang, C.-H., Chang, L.-L., Wu, Y.-P., Li, L., Jin, Z.: Effects of feedback regulation on vegetation patterns in semi-arid environments. Appl. Math. Model. 61, 200–215 (2018)

    MathSciNet  Google Scholar 

  64. Turing, A.M.: The chemical basis of mokphogenesis. Philos. Trans. R. Soc. Lond. 237, 37–72 (1952)

    MATH  Google Scholar 

  65. Zhou, J., Shi, J.: The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie–Gower predator–prey model with Holling-type II functional responses. J. Math. Anal. Appl. 405(2), 618–630 (2013)

    MathSciNet  MATH  Google Scholar 

  66. Leslie, P.H.: A stochastic model for studying the properties of certain biological systems by numerical methods. Biometrika 45, 16–31 (1958)

    MathSciNet  MATH  Google Scholar 

  67. Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245 (1948)

    MathSciNet  MATH  Google Scholar 

  68. Tripathi, J.P., Meghwani, S.S., Thakur, M., Abbas, S.: A modified Leslie–Gower predator–prey interaction model and parameter identifiability. Commun. Nonlinear Sci. Numer. Simul. 54, 331–346 (2018)

    MathSciNet  Google Scholar 

  69. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (2012)

    MATH  Google Scholar 

  70. Wang, M.: Stationary patterns for a prey–predator model with prey-dependent and ratio-dependent functional responses and diffusion. Phys. D 196, 172–192 (2004)

    MathSciNet  MATH  Google Scholar 

  71. Pang, P.Y.H., Wang, M.: Strategy and stationary pattern in a three-species predator–prey model. J. Differ. Equ. 200, 245–273 (2004)

    MathSciNet  MATH  Google Scholar 

  72. Peng, R.: Qualitative analysis of steady states to the Selkov model. J. Differ. Equ. 241, 386–398 (2007)

    MathSciNet  MATH  Google Scholar 

  73. Tian, C., Ruan, S.: A free boundary problem for Aedes aegypti mosquito invasion. Appl. Math. Model. 46, 203–217 (2017)

    MathSciNet  Google Scholar 

  74. Tian, C., Lin, L., Zhang, L.: Additive noise driven phase transitions in a predator–prey system. Appl. Math. Model. 46, 423–432 (2017)

    MathSciNet  Google Scholar 

  75. Liu, Q.-X., et al.: Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nat. Commun. 5, 5234 (2014)

    Google Scholar 

  76. Liu, Q.-X., Doelman, A., Rottschafer, V., de Jager, M., Herman, P.M.J., Rietkerk, M., van de Koppel, J.: Phase separation explains a new class of self-organized spatial patterns in ecological systems. Proc. Natl. Acad. Sci. USA 110, 11905–11910 (2013)

    MathSciNet  Google Scholar 

  77. Sun, G.-Q., Jusup, M., Jin, Z., Wang, Y., Wang, Z.: Pattern transitions in spatial epidemics: mechanisms and emergent properties. Phys. Life Rev. 19, 43–73 (2016)

    Google Scholar 

  78. Reichenbach, T., Mobilia, M., Frey, E.: Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature 448, 1046 (2007)

    Google Scholar 

Download references

Acknowledgements

The project is funded by the National Natural Science Foundation of China under Grants 11671241 and 11331009, Outstanding Young Talents Support Plan of Shanxi province, and Selective Financial Support for Scientific and Technological Activities of Overseas Students in Shanxi Province. The research work of Jai Prakash Tripathi is supported by SERB, DST project [grant: ECR/2017/002786].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Quan Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, V., Tripathi, J.P., Abbas, S. et al. Qualitative analysis of a diffusive Crowley–Martin predator–prey model: the role of nonlinear predator harvesting. Nonlinear Dyn 98, 1169–1189 (2019). https://doi.org/10.1007/s11071-019-05255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05255-4

Keywords

Navigation