Skip to main content
Log in

Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator: part II—simultaneous 1:1 and 2:1 internal resonances

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate in a silicon micromachined arch beam the activation of a one-to-one internal resonance between the first symmetric and first antisymmetric modes simultaneously with the activation of a two-to-one internal resonance between these modes and the second symmetric mode. The arch is excited electrically, using an antisymmetric partial electrode to activate both modes of vibrations, and tuned electrothermally via Joule’s heating. Theoretically, we explore the dynamics of the beam using the Galerkin and multiple timescales methods. The simulation results are shown to have good agreement with the experimental data. The results show the merging of both modes at crossing, after which the first antisymmetric mode exchanges the nonlinear behavior with the first symmetric mode. The nonlinear behavior of the arch beam is demonstrated and analyzed experimentally and theoretically as experiencing the simultaneous 2:1 and 1:1 internal resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen, C., Zanette, D.H., Czaplewski, D.A., Shaw, S., López, D.: Direct observation of coherent energy transfer in nonlinear micromechanical oscillators. Nat. Commun. 8, 15523 (2017)

    Article  Google Scholar 

  2. Pu, D., Wei, X., Xu, L., Jiang, Z., Huan, R.: Synchronization of electrically coupled micromechanical oscillators with a frequency ratio of 3:1. Appl. Phys. Lett. 112(1), 013503 (2018)

    Article  Google Scholar 

  3. Lan, C., Qin, W., Deng, W.: Energy harvesting by dynamic unstability and internal resonance for piezoelectric beam. Appl. Phys. Lett. 107(9), 093902 (2015)

    Article  Google Scholar 

  4. Xiong, L., Tang, L., Mace, B.R.: Internal resonance with commensurability induced by an auxiliary oscillator for broadband energy harvesting. Appl. Phys. Lett. 108(20), 203901 (2016)

    Article  Google Scholar 

  5. Zhang, T., Wei, X., Jiang, Z., Cui, T.: Sensitivity enhancement of a resonant mass sensor based on internal resonance. Appl. Phys. Lett. 113(22), 223505 (2018)

    Article  Google Scholar 

  6. Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3, 806 (2012)

    Article  Google Scholar 

  7. Hajjaj, A., Jaber, N., Hafiz, M., Ilyas, S., Younis, M.: Multiple internal resonances in MEMS arch resonators. Phys. Lett. A 382(47), 3393–3398 (2018)

    Article  Google Scholar 

  8. Samanta, C., Yasasvi Gangavarapu, P., Naik, A.: Nonlinear mode coupling and internal resonances in \({\text{ MoS }}_2\) nanoelectromechanical system. Appl. Phys. Lett. 107(17), 173110 (2015)

    Article  Google Scholar 

  9. Ouakad, H.M., Sedighi, H.M., Younis, M.I.: One-to-one and three-to-one internal resonances in MEMS shallow arches. J. Comput. Nonlinear Dyn. 12(5), 051025 (2017)

    Article  Google Scholar 

  10. Sarrafan, A., Bahreyni, B., Golnaraghi, F.: Development and characterization of an h-shaped microresonator exhibiting 2:1 internal resonance. J. Microelectromech. Syst. 26(5), 993–1001 (2017)

    Article  Google Scholar 

  11. Ramini, A.H., Hajjaj, A.Z., Younis, M.I.: Tunable resonators for nonlinear modal interactions. Sci. Rep. 6, 34717 (2016)

    Article  Google Scholar 

  12. Hajjaj, A.Z., Alfosail, F.K., Younis, M.I.: Two-to-one internal resonance of MEMS arch resonators. Int. J. Nonlinear Mech. 107, 64–72 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.09.014

    Article  Google Scholar 

  13. Daqaq, M.F., Abdel-Rahman, E.M., Nayfeh, A.H.: Two-to-one internal resonance in microscanners. Nonlinear Dyn. 57(1–2), 231 (2009)

    Article  Google Scholar 

  14. Rega, G.: Nonlinear vibrations of suspended cables—part I: modeling and analysis. Appl. Mech. Rev. 57(6), 443–478 (2004)

    Article  Google Scholar 

  15. Rega, G., Lacarbonara, W., Nayfeh, A., Chin, C.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Nonlinear Mech. 34(5), 901–924 (1999)

    Article  Google Scholar 

  16. Benedettini, F., Rega, G., Alaggio, R.: Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. J. Sound Vib. 182(5), 775–798 (1995)

    Article  Google Scholar 

  17. Lee, C.L., Perkins, N.C.: Nonlinear oscillations of suspended cables containing a two-to-one internal resonance. Nonlinear Dyn. 3(6), 465–490 (1992)

    Google Scholar 

  18. Lacarbonara, W., Arafat, H.N., Nayfeh, A.H.: Non-linear interactions in imperfect beams at veering. Int. J. Nonlinear Mech. 40(7), 987–1003 (2005)

    Article  Google Scholar 

  19. Emam, S.A., Nayfeh, A.H.: Non-linear response of buckled beams to 1:1 and 3:1 internal resonances. Int. J. Nonlinear Mech. 52, 12–25 (2013)

    Article  Google Scholar 

  20. Afaneh, A., Ibrahim, R.: Nonlinear response of an initially buckled beam with 1:1 internal resonance to sinusoidal excitation. Nonlinear Dyn. 4(6), 547–571 (1993)

    Article  Google Scholar 

  21. Tuer, K., Golnaraghi, M., Wang, D.: Development of a generalised active vibration suppression strategy for a cantilever beam using internal resonance. Nonlinear Dyn. 5(2), 131–151 (1994)

    Google Scholar 

  22. Pai, P.F., Nayfeh, A.H.: Non-linear non-planar oscillations of a cantilever beam under lateral base excitations. Int. J. Nonlinear Mech. 25(5), 455–474 (1990)

    Article  Google Scholar 

  23. Alfosail, F.K., Hajjaj, A.Z., Younis, M.I.: Theoretical and experimental investigation of two-to-one internal resonance in MEMS arch resonators. J. Comput. Nonlinear Dyn. 14(1), 011001 (2019)

    Article  Google Scholar 

  24. Wang, L., Zhao, Y.: Multiple internal resonances and non-planar dynamics of shallow suspended cables to the harmonic excitations. J. Sound Vib. 319(1), 1–14 (2009). https://doi.org/10.1016/j.jsv.2008.08.020

    Article  Google Scholar 

  25. Pellicano, F., Amabili, M., Vakakis, A.: Nonlinear vibrations and multiple resonances of fluid-filled, circular shells, part 2: perturbation analysis. J. Vib. Acoust. 122(4), 355–364 (2000)

    Article  Google Scholar 

  26. Amabili, M.: Internal resonances in non-linear vibrations of a laminated circular cylindrical shell. Nonlinear Dyn. 69(3), 755–770 (2012). https://doi.org/10.1007/s11071-011-0302-1

    Article  MathSciNet  MATH  Google Scholar 

  27. Breslavsky, I.D., Amabili, M.: Nonlinear vibrations of a circular cylindrical shell with multiple internal resonances under multi-harmonic excitation. Nonlinear Dyn. 93, 1–10 (2017)

    Google Scholar 

  28. Di Egidio, A., Luongo, A., Vestroni, F.: Nonstationary nonplanar free motions of an orbiting string with multiple internal resonances. Meccanica 31(3), 363–381 (1996). https://doi.org/10.1007/bf00426996

    Article  MathSciNet  MATH  Google Scholar 

  29. Ibrahim, R.A.: Multiple internal resonance in a structure-liquid system. J. Eng. Ind. 98(3), 1092–1098 (1976). https://doi.org/10.1115/1.3439013

    Article  Google Scholar 

  30. Wang, F., Bajaj, A.K.: Nonlinear dynamics of a three-beam structure with attached mass and three-mode interactions. Nonlinear Dyn. 62(1), 461–484 (2010). https://doi.org/10.1007/s11071-010-9734-2

    Article  MathSciNet  MATH  Google Scholar 

  31. Carvalho, E.C., Gonçalves, P.B., Rega, G.: Multiple internal resonances and nonplanar dynamics of a cruciform beam with low torsional stiffness. Int. J. Solids Struct. 121, 117–134 (2017). https://doi.org/10.1016/j.ijsolstr.2017.05.020

    Article  Google Scholar 

  32. Nayfeh, A.H.: Nonlinear Interactions: Analytical, Computational, and Experimental Methods. Wiley, New York (2000)

    MATH  Google Scholar 

  33. Hajjaj, A.Z., Alcheikh, N., Younis, M.I.: The static and dynamic behavior of MEMS arch resonators near veering and the impact of initial shapes. Int. J. Nonlinear Mech. 95, 277–286 (2017)

    Article  Google Scholar 

  34. Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31(1), 91–117 (2003). https://doi.org/10.1023/a:1022103118330

    Article  MATH  Google Scholar 

  35. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer, New York (2011)

    Book  Google Scholar 

  36. Nayfeh, A.H.: Resolving controversies in the application of the method of multiple scales and the generalized method of averaging. Nonlinear Dyn. 40(1), 61–102 (2005). https://doi.org/10.1007/s11071-005-3937-y

    Article  MathSciNet  MATH  Google Scholar 

  37. Alfosail, F., Hajjaj, A.Z., Younis, M.: Theoretical and experimental investigation of two-to-one internal resonance in MEMS arch resonators. J. Comput. Nonlinear Dyn. (2018). https://doi.org/10.1115/1.4041771

    Article  Google Scholar 

  38. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (2011)

    MATH  Google Scholar 

  39. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, New York (2008)

    MATH  Google Scholar 

  40. Polytec. http://www.polytec.com/us/. Accessed 2019

Download references

Acknowledgements

We acknowledge the financial support from King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad I. Younis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Definition of coefficients used in Eqs. (10.1)–(10.3)

To simplify the expressions, we use the following definition to represent the integrals:

$$\begin{aligned}&\left\langle {A,B} \right\rangle =\mathop {\int }_0^1 {A(x)B(x)} \;\mathrm{d}x \end{aligned}$$
(A.1)
$$\begin{aligned}&\mu =\frac{c}{2} \end{aligned}$$
(A.2)
$$\begin{aligned}&F_{m_1 } =\alpha _2 V_\mathrm{AC} V_{\mathrm{DC}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _m \left( x \right) }{\left( {w_s \left( x \right) -1} \right) ^{2}}\hbox {d}x} \right) \end{aligned}$$
(A.3)
$$\begin{aligned}&F_{n_1 } =\alpha _2 V_\mathrm{AC} V_{\mathrm{DC}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _n \left( x \right) }{\left( {w_s \left( x \right) -1} \right) ^{2}}\hbox {d}x} \right) \end{aligned}$$
(A.4)
$$\begin{aligned}&F_{k_1 } =\frac{1}{4}\alpha _2 V_\mathrm{AC}^2 \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \left( x \right) }{\left( {w_s \left( x \right) -1} \right) ^{2}}\hbox {d}x} \right) \end{aligned}$$
(A.5)
$$\begin{aligned}&R_{m_1 } =2\alpha _1 \left( \varGamma \left( {\phi _k ,\phi _m } \right) \left\langle {\phi _m ,w_s ^{\prime \prime }} \right\rangle \right. \nonumber \\&\qquad \quad \left. +\,\varGamma \left( {w_s ,\phi _m } \right) \left\langle {\phi _m ,\phi _k ^{\prime \prime }} \right\rangle +\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\phi _m ,\phi _m ^{\prime \prime }} \right\rangle \right) \nonumber \\&\qquad \quad +\,6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m ^{2}}{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(A.6)
$$\begin{aligned}&R_{m_2 } =2\alpha _1 \left( \varGamma \left( {\phi _k ,\phi _n } \right) \left\langle {\phi _m ,w_s ^{\prime \prime }} \right\rangle \right. \nonumber \\&\qquad \quad \left. +\,\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\phi _m ,\phi _k ^{\prime \prime }} \right\rangle +\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\phi _m ,\phi _n ^{\prime \prime }} \right\rangle \right) \nonumber \\&\qquad \quad +\,6V_{\mathrm{DCEff}} \alpha _2 \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m \phi _n }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(A.7)
$$\begin{aligned}&R_{n_1 } =2\alpha _1 \left( \varGamma \left( {\phi _k ,\phi _m } \right) \left\langle {\phi _n ,w_s ^{\prime \prime }} \right\rangle \right. \nonumber \\&\qquad \quad \left. +\,\varGamma \left( {w_s ,\phi _m } \right) \left\langle {\phi _n ,\phi _k ^{\prime \prime }} \right\rangle +\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\phi _n ,\phi _m ^{\prime \prime }} \right\rangle \right) \nonumber \\&\qquad \quad +\,6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m \phi _n }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(A.8)
$$\begin{aligned}&R_{n_2 } =2\alpha _1 \left( \varGamma \left( {\phi _k ,\phi _n } \right) \left\langle {\phi _n ,w_s ^{\prime \prime }} \right\rangle \right. \nonumber \\&\qquad \quad \left. +\,\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\phi _n ,\phi _k ^{\prime \prime }} \right\rangle +\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\phi _n ,\phi _n ^{\prime \prime }} \right\rangle \right) \nonumber \\&\qquad \quad +\,6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _n ^{2}}{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(A.9)
$$\begin{aligned}&R_{k_1 } =\alpha _1 \left( \varGamma \left( {\phi _m ,\phi _m } \right) \left\langle {\phi _k ,w_s ^{\prime \prime }} \right\rangle \right. \nonumber \\&\qquad \quad \left. +\,2\varGamma \left( {w_s ,\phi _m } \right) \left\langle {\phi _k ,\phi _m ^{\prime \prime }} \right\rangle \right) \nonumber \\&\qquad \quad +\,3\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m ^{2}}{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(A.10)
$$\begin{aligned}&R_{k_2 } =2\alpha _1 \left( \varGamma \left( {\phi _m ,\phi _n } \right) \left\langle {\phi _k ,w_s ^{\prime \prime }} \right\rangle \right. \nonumber \\&\qquad \quad \left. +\,\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\phi _k ,\phi _m ^{\prime \prime }} \right\rangle +\varGamma \left( {w_s ,\phi _m } \right) \left\langle {\phi _k ,\phi _n ^{\prime \prime }} \right\rangle \right) \nonumber \\&\qquad \quad +\,\alpha _2 6V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m \phi _n }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(A.11)
$$\begin{aligned}&R_{k_3 } =\alpha _1 \left( \varGamma \left( {\phi _n ,\phi _n } \right) \left\langle {\phi _k ,w_s ^{\prime \prime }} \right\rangle \right. \nonumber \\&\qquad \quad \left. +\,2\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\phi _k ,\phi _n ^{\prime \prime }} \right\rangle \right) \nonumber \\&\qquad \quad +\,3\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _n ^{2}}{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(A.12)

Appendix B. Galerkin procedure

Here we explain the Galerkin procedure used to find the particular solutions by solving the boundary value problem in Eqs. (12.1)–(12.7) defined by

$$\begin{aligned} H[\omega ]= & {} H^{iv} - N H^{\prime {\prime }} - 2\alpha _{1}{{w}_{s}}^{\prime {\prime }}\left( \mathop \int \limits _{0}^{1}w_{s}^{\prime } H^{\prime } \hbox {d}x\right) \nonumber \\&-\frac{2{\alpha }_{2}V_{\mathrm{DCeff}}^{2}}{(1-w_{s})^{3}} H-\omega _{i}^{2}H \end{aligned}$$
(B.1)

We express the function H as a superposition of five mode shapes \(f_{i}(x)\) given by

$$\begin{aligned} H=\sum _{i=1}^{n=5} {q_i f_i (x)} \end{aligned}$$
(B.2)

where \(q_{i}\) are coefficients to be solved for in the Galerkin procedure. The \(f_{i}(x)\) are the mode shapes of the straight clamped–clamped beam. Then, the equation is reduced via orthogonality of the mode shapes to a set of five algebraic equations that are solved to obtain the value of coefficients.

Appendix C. Definition of coefficient used in Eqs. (14.1)–(14.3)

To simplify the expressions, we use the definition in (C.1) to represent the integrals in (C.2)–(C.34).

$$\begin{aligned} \langle A,B \rangle= & {} \mathop {\int }\limits _{0}^{1} A(x)B(x)\mathrm{d}x \end{aligned}$$
(C.1)
$$\begin{aligned} F_{mk}= & {} -\alpha _2 V_\mathrm{AC} V_{\mathrm{DC}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m }{\left( {1-w_s } \right) ^{3}}\hbox {d}x} \right) \end{aligned}$$
(C.2)
$$\begin{aligned} F_{m_2 }= & {} -\frac{1}{2}\alpha _2 V_\mathrm{AC}^2 \left( {\mathop {\int }\limits _0^1 \frac{\phi _m ^{2}}{\left( {1-w_s } \right) ^{3}}\hbox {d}x} \right) \end{aligned}$$
(C.3)
$$\begin{aligned} F_{mn_1 }= & {} -\frac{1}{2}\alpha _2 V_\mathrm{AC}^2 \left( {\mathop {\int }\limits _0^1 \frac{\phi _m \phi _n }{\left( {1-w_s } \right) ^{3}}\hbox {d}x} \right) \end{aligned}$$
(C.4)
$$\begin{aligned} F_{nk}= & {} \alpha _2 V_\mathrm{AC} V_{\mathrm{DC}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _n }{\left( {1-w_s } \right) ^{3}}\hbox {d}x} \right) \end{aligned}$$
(C.5)
$$\begin{aligned} F_{n_2 }= & {} \frac{1}{2}\alpha _2 V_\mathrm{AC}^2 \left( {\mathop {\int }\limits _0^1 \frac{\phi _n ^{2}}{\left( {1-w_s } \right) ^{3}}\hbox {d}x} \right) \end{aligned}$$
(C.6)
$$\begin{aligned} K_{kmk_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _k ,\psi _{km} } \right) \left\langle {w_s ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&+\,\varGamma \left( {\phi _m ,\psi _{kk} } \right) \left\langle {w_s ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&\left. +\varGamma \left( {w_s ,\psi _{km} } \right) \left\langle {\phi _k ^{\prime \prime },\phi _m } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( 2\varGamma \left( {\phi _k ,\phi _m } \right) \left\langle {\phi _k ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&+\,\varGamma \left( {w_s ,\psi _{kk} } \right) \left\langle {\phi _m ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&\left. +\varGamma \left( {\phi _k ,\phi _k } \right) \left\langle {\phi _m ^{\prime \prime },\phi _m } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {w_s ,\phi _k } \right) \left\langle {\psi _{km} ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _m } \right) \left\langle {\psi _{kk} ^{\prime \prime },\phi _m } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( \left( {\mathop {\int }\limits _0^1 \frac{\phi _m \left( x \right) ^{2}\psi _{kk} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right. \nonumber \\&\left. +\,\left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m \psi _{km} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right) \end{aligned}$$
(C.7)
$$\begin{aligned} K_{knk_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _k ,\psi _{kn} } \right) \left\langle {w_s ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&+\,\varGamma \left( {\phi _n ,\psi _{kk} } \right) \left\langle {w_s ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&\left. +\varGamma \left( {w_s ,\psi _{kn} } \right) \left\langle {\phi _k ^{\prime \prime },\phi _m } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( 2\varGamma \left( {\phi _k ,\phi _n } \right) \left\langle {\phi _k ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&+\,\varGamma \left( {w_s ,\psi _{kk} } \right) \left\langle {\phi _n ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&\left. +\varGamma \left( {\phi _k ,\phi _k } \right) \left\langle {\phi _n ^{\prime \prime },\phi _m } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {w_s ,\phi _n } \right) \left\langle {\psi _{kk} ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\psi _{kn} ^{\prime \prime },\phi _m } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( \left( {\mathop {\int }\limits _0^1 \frac{\phi _m \phi _n \psi _{kk} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right. \nonumber \\&\left. +\left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m \psi _{kn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right) \end{aligned}$$
(C.8)
$$\begin{aligned} K_{mmm_1 }= & {} 2\alpha _1 \varGamma \left( {\phi _m ,\psi _{mm} } \right) \left\langle {w_s ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&+\,2\alpha _1 \varGamma \left( {w_s ,\psi _{mm} } \right) \left\langle {\phi _m ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&+\,3\alpha _1 \varGamma \left( {\phi _m ,\phi _m } \right) \left\langle {\phi _m ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&+\,2\alpha _1 \varGamma \left( {w_s ,\phi _m } \right) \left\langle {\psi _{mm} ^{\prime \prime },\phi _m \left( x \right) } \right\rangle \nonumber \\&+6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _m ^{2}\psi _{mm} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.9)
$$\begin{aligned} K_{mnm_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _m ,\psi _{mn} } \right) \left\langle {w_s ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _n ,\psi _{mm} } \right) \left\langle {w_s ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{mn} } \right) \left\langle {\phi _m ^{\prime \prime },\phi _m } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {w_s ,\psi _{mm} } \right) \left\langle {\phi _n ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _m ,\phi _m } \right) \left\langle {\phi _n ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\psi _{mm} ^{\prime \prime },\phi _m } \right\rangle \right) \nonumber \\&+\,4\alpha _1 \varGamma \left( {\phi _m ,\phi _n } \right) \left\langle {\phi _m ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&+2\alpha _1 \varGamma \left( {w_s ,\phi _m } \right) \left\langle {\psi _{mn} ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&+6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _m \phi _n \psi _{mm} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _m ^{2}\psi _{mn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.10)
$$\begin{aligned} K_{nnm_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _n ,\psi _{mn} } \right) \left\langle {w_s ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{mn} } \right) \left\langle {\phi _n ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _m ,\phi _n } \right) \left\langle {\phi _n ^{\prime \prime },\phi _m } \right\rangle \right) \nonumber \\&+\,\alpha _1 \varGamma \left( {\phi _n ,\phi _n } \right) \left\langle {\phi _m ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&+2\alpha _1 \varGamma \left( {w_s ,\phi _n } \right) \left\langle {\psi _{mn} ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&+6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _m \phi _n \psi _{mn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.11)
$$\begin{aligned} K_{km_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _k ,\phi _m } \right) \left\langle {w_s ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _m } \right) \left\langle {\phi _k ^{\prime \prime }\phi _m } \right\rangle +\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\phi _m ^{\prime \prime }\phi _m } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m ^{2}}{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.12)
$$\begin{aligned} K_{mmn_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _m ,\psi _{mn} } \right) \left\langle {w_s ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{mn} } \right) \left\langle {\phi _m ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\varGamma \left( {\phi _m ,\phi _n } \right) \left\langle {\phi _m ^{\prime \prime },\phi _m } \right\rangle \right) \nonumber \\&+\,\alpha _1 \varGamma \left( {\phi _m ,\phi _m } \right) \left\langle {\phi _n ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&+2\alpha _1 \varGamma \left( {w_s ,\phi _m } \right) \left\langle {\psi _{mn} ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _m ^{2}\psi _{mn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.13)
$$\begin{aligned} K_{mnn_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _m ,\psi _{nn} } \right) \left\langle {w_s ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _n ,\psi _{mn} } \right) \left\langle {w_s ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{nn} } \right) \left\langle {\phi _m ^{\prime \prime },\phi _m } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {\phi _n ,\phi _n } \right) \left\langle {\phi _m ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{mn} } \right) \left\langle {\phi _n ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\psi _{mn} ^{\prime \prime },\phi _m } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {w_s ,\phi _m } \right) \left\langle {\psi _{nn} ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,2\varGamma \left( {\phi _m ,\phi _n } \right) \left\langle {\phi _n ^{\prime \prime },\phi _m } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( \left( {\mathop {\int }\limits _0^1 \frac{\phi _m \phi _n \psi _{mn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right. \nonumber \\&\left. +\,\left( {\mathop {\int }\limits _0^1 \frac{\phi _m ^{2}\psi _{nn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right) \end{aligned}$$
(C.14)
$$\begin{aligned} K_{nnn_1 }= & {} 2\alpha _1 \varGamma \left( {\phi _n ,\psi _{nn} } \right) \left\langle {w_s ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&+2\alpha _1 \varGamma \left( {w_s ,\psi _{nn} } \right) \left\langle {\phi _n ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&+2\alpha _1 \varGamma \left( {w_s ,\phi _n } \right) \left\langle {\psi _{nn} ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&+\,3\alpha _1 \varGamma \left( {\phi _n ,\phi _n } \right) \left\langle {\phi _n ^{\prime \prime },\phi _m } \right\rangle \nonumber \\&+6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _m \phi _n \psi _{nn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.15)
$$\begin{aligned} K_{km_2 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _k ,\phi _m } \right) \left\langle {w_s ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _m } \right) \left\langle {\phi _k ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\phi _m ^{\prime \prime }\phi _m } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m ^{2}}{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.16)
$$\begin{aligned} K_{kn_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _k ,\phi _n } \right) \left\langle {w_s ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\phi _k ^{\prime \prime },\phi _m } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\phi _n ^{\prime \prime },\phi _m } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m \phi _n }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.17)
$$\begin{aligned} S_{kmk_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _k ,\psi _{km} } \right) \left\langle {w_s ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _m ,\psi _{kk} } \right) \left\langle {w_s ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{km} } \right) \left\langle {\phi _k ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {w_s ,\psi _{kk} } \right) \left\langle {\phi _m ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&+\,\varGamma \left( {\phi _k ,\phi _k } \right) \left\langle {\phi _m ^{\prime \prime },\phi _n } \right\rangle \nonumber \\&\left. +\varGamma \left( {w_s ,\phi _m } \right) \left\langle {\psi _{kk} ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {w_s ,\phi _k } \right) \left\langle {\psi _{km} ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,2\varGamma \left( {\phi _k ,\phi _m } \right) \left\langle {\phi _k ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( \left( {\mathop {\int }\limits _0^1 \frac{\phi _m \phi _n \psi _{kk} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right. \nonumber \\&\left. +\,\left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _n \psi _{km} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right) \end{aligned}$$
(C.18)
$$\begin{aligned} S_{knk_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _k ,\psi _{kn} } \right) \left\langle {w_s ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _n ,\psi _{kk} } \right) \left\langle {w_s ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{kn} } \right) \left\langle {\phi _k ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {w_s ,\psi _{kk} } \right) \left\langle {\phi _n ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _k ,\phi _k } \right) \left\langle {\phi _n ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\psi _{kk} ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {w_s ,\phi _k } \right) \left\langle {\psi _{kn} ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,2\varGamma \left( {\phi _k ,\phi _n } \right) \left\langle {\phi _k ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( \left( {\mathop {\int }\limits _0^1 \frac{\phi _n ^{2}\psi _{kk} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right. \nonumber \\&\left. +\,\left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _n \psi _{kn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right) \end{aligned}$$
(C.19)
$$\begin{aligned} S_{mmm_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _m ,\psi _{mm} } \right) \left\langle {w_s ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{mm} } \right) \left\langle {\phi _m ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _m } \right) \left\langle {\psi _{mm} ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,3\alpha _1 \varGamma \left( {\phi _m ,\phi _m } \right) \left\langle {\phi _m ^{\prime \prime },\phi _n } \right\rangle \nonumber \\&+6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _m \phi _n \psi _{mm} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.20)
$$\begin{aligned} S_{mnm_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _m ,\psi _{mn} } \right) \left\langle {w_s ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _n ,\psi _{mm} } \right) \left\langle {w_s ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{mn} } \right) \left\langle {\phi _m ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {w_s ,\psi _{mm} } \right) \left\langle {\phi _n ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _m ,\phi _m } \right) \left\langle {\phi _n ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\psi _{mm} ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {w_s ,\phi _m } \right) \left\langle {\psi _{mn} ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,2\varGamma \left( {\phi _m ,\phi _n } \right) \left\langle {\phi _m ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( \left( {\mathop {\int }\limits _0^1 \frac{\phi _n ^{2}\psi _{mm} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right. \nonumber \\&\left. +\,\left( {\mathop {\int }\limits _0^1 \frac{\phi _m \phi _n \psi _{mn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right) \end{aligned}$$
(C.21)
$$\begin{aligned} S_{nnm_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _n ,\psi _{mn} } \right) \left\langle {w_s ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{mn} } \right) \left\langle {\phi _n ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\psi _{mn} ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,\alpha _1 \left( 2\varGamma \left( {\phi _m ,\phi _n } \right) \left\langle {\phi _n ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _n ,\phi _n } \right) \left\langle {\phi _m ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _n ^{2}\psi _{mn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.22)
$$\begin{aligned} S_{km_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _k ,\phi _m } \right) \left\langle {w_s ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _m } \right) \left\langle {\phi _k ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\phi _m ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m \phi _n }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.23)
$$\begin{aligned} S_{mmn_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _m ,\psi _{mn} } \right) \left\langle {w_s ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{mn} } \right) \left\langle {\phi _m ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _m ,\phi _n } \right) \left\langle {\phi _m ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,\alpha _1 \left( \varGamma \left( {\phi _m ,\phi _m } \right) \left\langle {\phi _n ^{\prime \prime }\phi _n } \right\rangle \right. \nonumber \\&\left. +\,2\varGamma \left( {w_s ,\phi _m } \right) \left\langle {\psi _{mn} ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _m \phi _n \psi _{mn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.24)
$$\begin{aligned}&S_{mnn_1 } =2\alpha _1 \left( \varGamma \left( {\phi _m ,\psi _{nn} } \right) \left\langle {w_s ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _n ,\psi _{mn} } \right) \left\langle {w_s ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{nn} } \right) \left\langle {\phi _m ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {\phi _n ,\phi _n } \right) \left\langle {\phi _m ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{mn} } \right) \left\langle {\phi _n ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\psi _{mn} ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {w_s ,\phi _m } \right) \left\langle {\psi _{nn} ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,2\varGamma \left( {\phi _m ,\phi _n } \right) \left\langle {\phi _n ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( \left( {\mathop {\int }\limits _0^1 \frac{\phi _n ^{2}\psi _{mn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right. \nonumber \\&\left. +\,\left( {\mathop {\int }\limits _0^1 \frac{\phi _m \phi _n \psi _{nn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right) \end{aligned}$$
(C.25)
$$\begin{aligned} S_{nnn_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _n ,\psi _{nn} } \right) \left\langle {w_s ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{nn} } \right) \left\langle {\phi _n ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\psi _{nn} ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,3\alpha _1 \varGamma \left( {\phi _n ,\phi _n } \right) \left\langle {\phi _n ^{\prime \prime },\phi _n } \right\rangle \nonumber \\&+6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _n ^{2}\psi _{nn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.26)
$$\begin{aligned} S_{kn_1 }= & {} 2\alpha _1 \left( \varGamma \left( {\phi _k ,\phi _n } \right) \left\langle {w_s ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\phi _k ^{\prime \prime },\phi _n } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\phi _n ^{\prime \prime },\phi _n } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _n ^{2}}{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.27)
$$\begin{aligned} T_{mm}= & {} 2\alpha _1 \left( \varGamma \left( {\phi _m ,\phi _m } \right) \left\langle {w_s ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,2\varGamma \left( {w_s ,\phi _m } \right) \left\langle {\phi _m ^{\prime \prime }\phi _k } \right\rangle \right) \nonumber \\&+6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m ^{2}}{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.28)
$$\begin{aligned} T_{nm}= & {} 2\alpha _1 \left( \varGamma \left( {\phi _m ,\phi _n } \right) \left\langle {w_s ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\phi _m ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _m } \right) \left\langle {\phi _n ^{\prime \prime }\phi _k } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m \phi _n }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.29)
$$\begin{aligned} T_{nn}= & {} 2\alpha _1 \left( \varGamma \left( {\phi _n ,\phi _n } \right) \left\langle {w_s ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,2\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\phi _n ^{\prime \prime },\phi _k } \right\rangle \right) \nonumber \\&+6\alpha _2 V_{\mathrm{DCEff}} \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _n ^{2}}{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
(C.30)
$$\begin{aligned} T_{kkk}= & {} 2\alpha _1 \left( \varGamma \left( {\phi _k ,\psi _{kk} } \right) \left\langle {w_s ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _k ,\psi _{k_2 } } \right) \left\langle {w_s ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{kk} } \right) \left\langle {\phi _k ^{\prime \prime },\phi _k } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {w_s ,\psi _{k_2 } } \right) \left\langle {\phi _k ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\psi _{kk} ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\psi _{k_2 } ^{\prime \prime },\phi _k } \right\rangle \right) \nonumber \\&+\,3\alpha _1 \varGamma \left( {\phi _k ,\phi _k } \right) \left\langle {\phi _k ^{\prime \prime },\phi _k } \right\rangle \nonumber \\&+6\alpha _2 V_{\mathrm{DCEff}} \left( \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \left( x \right) ^{2}\psi _{kk} \left( x \right) }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right. \nonumber \\&\left. +\,\left( {\mathop {\int }\limits _0^1 \frac{\phi _k \left( x \right) ^{2}\psi _{k_2 } \left( x \right) }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right) \end{aligned}$$
(C.31)
$$\begin{aligned} T_{kmm}= & {} 2\alpha _1 \left( \varGamma \left( {\phi _k ,\psi _{mm} } \right) \left\langle {w_s ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _m ,\psi _{km} } \right) \left\langle {w_s ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{mm} } \right) \left\langle {\phi _k ^{\prime \prime },\phi _k } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {\phi _m ,\phi _m } \right) \left\langle {\phi _k ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&+\,\varGamma \left( {w_s ,\psi _{km} } \right) \left\langle {\phi _m ^{\prime \prime },\phi _k } \right\rangle \nonumber \\&\left. +\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\psi _{mm} ^{\prime \prime },\phi _k } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {w_s ,\phi _m } \right) \left\langle {\psi _{km} ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,2\varGamma \left( {\phi _k ,\phi _m } \right) \left\langle {\phi _m ^{\prime \prime },\phi _k } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m \psi _{km} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right. \nonumber \\&\left. +\,\left( {\mathop {\int }\limits _0^1 \frac{\phi _k ^{2}\psi _{mm} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right) \end{aligned}$$
(C.32)
$$\begin{aligned} T_{knm}= & {} 2\alpha _1 \left( \varGamma \left( {\phi _k ,\psi _{mn} } \right) \left\langle {w_s ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _m ,\psi _{kn} } \right) \left\langle {w_s ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{mn} } \right) \left\langle {\phi _k ^{\prime \prime },\phi _k } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {\phi _m ,\phi _n } \right) \left\langle {\phi _k ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{kn} } \right) \left\langle {\phi _m ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _k ,\phi _n } \right) \left\langle {\phi _m ^{\prime \prime },\phi _k } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {\phi _k ,\phi _m } \right) \left\langle {\phi _n ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&+\varGamma \left( {w_s ,\phi _m } \right) \left\langle {\psi _{kn} ^{\prime \prime },\phi _k } \right\rangle \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\psi _{mn} ^{\prime \prime },\phi _k } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _m \psi _{kn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right. \nonumber \\&\left. +\,\left( {\mathop {\int }\limits _0^1 \frac{\phi _k ^{2}\psi _{mn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right) \end{aligned}$$
(C.33)
$$\begin{aligned} T_{kmn}= & {} 2\alpha _1 \left( \varGamma \left( {\phi _k ,\psi _{mn} } \right) \left\langle {w_s ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _n ,\psi _{km} } \right) \left\langle {w_s ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{mn} } \right) \left\langle {\phi _k ^{\prime \prime },\phi _k } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {\phi _m ,\phi _n } \right) \left\langle {\phi _k ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _k ,\phi _n } \right) \left\langle {\phi _m ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{km} } \right) \left\langle {\phi _n ^{\prime \prime },\phi _k } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {\phi _k ,\phi _m } \right) \left\langle {\phi _n ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _n } \right) \left\langle {\psi _{km} ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\psi _{mn} ^{\prime \prime },\phi _k } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _n \psi _{km} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right. \nonumber \\&\left. +\,\left( {\mathop {\int }\limits _0^1 \frac{\phi _k ^{2}\psi _{mn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right) \end{aligned}$$
(C.34)
$$\begin{aligned} T_{knn}= & {} 2\alpha _1 \left( \varGamma \left( {\phi _k ,\psi _{nn} } \right) \left\langle {w_s ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {\phi _n ,\psi _{kn} } \right) \left\langle {w_s ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{nn} } \right) \left\langle {\phi _k ^{\prime \prime },\phi _k } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {\phi _n ,\phi _n } \right) \left\langle {\phi _k ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\psi _{kn} } \right) \left\langle {\phi _n ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +\,\varGamma \left( {w_s ,\phi _k } \right) \left\langle {\psi _{nn} ^{\prime \prime },\phi _k } \right\rangle \right) \nonumber \\&+\,2\alpha _1 \left( \varGamma \left( {w_s ,\phi _n } \right) \left\langle {\psi _{kn} ^{\prime \prime },\phi _k } \right\rangle \right. \nonumber \\&\left. +2\varGamma \left( {\phi _k ,\phi _n } \right) \left\langle {\phi _n ^{\prime \prime },\phi _k } \right\rangle \right) \nonumber \\&+\,6\alpha _2 V_{\mathrm{DCEff}} \left( \left( {\mathop {\int }\limits _0^1 \frac{\phi _k \phi _n \psi _{kn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right. \nonumber \\&\left. +\,\left( {\mathop {\int }\limits _0^1 \frac{\phi _k ^{2}\psi _{nn} }{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \right) \end{aligned}$$
(C.35)

Appendix D. Cartesian form of the modulation equations Eqs. (19.1)–(19.6)

To express the modulation equation in complex Cartesian form, we use the complex amplitude definition given by

$$\begin{aligned}&A_m =\frac{1}{2}\left( {p_m -\hbox {i }q_m } \right) e^{\mathrm {i}\lambda _1 t}\end{aligned}$$
(D.1)
$$\begin{aligned}&A_n =\frac{1}{2}\left( {p_n -\hbox {i }q_n } \right) e^{\mathrm {i}\lambda _2 t} \end{aligned}$$
(D.2)
$$\begin{aligned}&A_k =\frac{1}{2}\left( {p_k -\hbox {i }q_k } \right) e^{\mathrm {i}\lambda _3 t} \end{aligned}$$
(D.3)

Equations (D.1)–(D.3) are substituted in Eqs. (10.1)–(10.3) and Eqs. (14.1)–(14.3), and using Eqs. (16.1)–(16.3) with the method of reconstitution defined by Eq. (17) while separating the imaginary and real parts yields

$$\begin{aligned} \frac{\mathrm{d}p_m }{\mathrm{d}t}= & {} -\mu p_m \nonumber \\&+\,\left( {\frac{F_{k_1 } K_{km_1 } }{8\omega _k^2 \omega _m }-\frac{\mu ^{2}}{2\omega _m }-\sigma _1 -\frac{F_{m_2 } }{2\omega _m }} \right) q_m \nonumber \\&+\,\left( {\frac{F_{k_1 } K_{kn_1 } }{8\omega _k^2 \omega _m }-\frac{F_{mn_1 } }{2\omega _m }} \right) q_n +\,\frac{\mu F_{m_1 } }{2\omega _m^2 } \nonumber \\&+\,\left( {\frac{F_{mk} }{\omega _m }-\frac{F_{n_1 } K_{kn_1 } }{8\omega _m \omega _n^2 }-\frac{F_{m_1 } K_{km_1 } }{8\omega _m^3 }} \right) q_k \nonumber \\&-\left( {\frac{K_{mmn_1 } }{4\omega _m }+\frac{K_{kn_1 } R_{k_1 } }{16\omega _k^2 \omega _m }} \right) p_n q_m p_m \nonumber \\&+\,\left( {\frac{\mu K_{km_1 } }{8\omega _m^2 }-\frac{\mu K_{km_1 } }{8\omega _k \omega _m }+\frac{\mu R_{m_1 } }{8\omega _m^2 }} \right) \left( {p_k p_m +q_k q_m } \right) \nonumber \\&+\,\left( {\frac{\mu K_{kn_1 } }{8\omega _m \omega _n }-\frac{\mu K_{kn_1 } }{8\omega _k \omega _m }+\frac{\mu R_{m_2 } }{8\omega _m^2 }} \right) \left( {p_k p_n +q_k q_n } \right) \nonumber \\&-\left( {\frac{K_{mnn_1 } }{8\omega _m }+\frac{K_{nnm_1 } }{8\omega _m }+\frac{K_{kn_1 } R_{k_2 } }{32\omega _k^2 \omega _m }+\frac{K_{km_1 } R_{k_3 } }{32\omega _k^2 \omega _m }} \right) q_m q_n^2 \nonumber \\&-\left( {\frac{K_{nnm_1 } }{4\omega _m }+\frac{K_{km_1 } R_{k_3 } }{16\omega _k^2 \omega _m }} \right) p_n q_n p_m \nonumber \\&+\,\left( {\frac{K_{mmn_1 } }{8\omega _m }-\frac{K_{mnm_1 } }{8\omega _m }+\frac{K_{kn_1 } R_{k_1 } }{32\omega _k^2 \omega _m }-\frac{K_{km_1 } R_{k_2 } }{32\omega _k^2 \omega _m }} \right) \nonumber \\&\left( {q_n p_m^2 -q_m^2 q_n } \right) \nonumber \\&+\,\left( {\frac{K_{nnm_1 } }{8\omega _m }-\frac{K_{mnn_1 } }{8\omega _m }-\frac{K_{kn_1 } R_{k_2 } }{32\omega _k^2 \omega _m }+\frac{K_{km_1 } R_{k_3 } }{32\omega _k^2 \omega _m }} \right) p_n^2 q_m \nonumber \\&+\,\frac{R_{m_1 } }{4\omega _m }\left( {p_k q_m -q_k p_m } \right) \nonumber \\&-\left( {q_m p_k^2 +q_k^2 q_m } \right) \left( {\frac{K_{kmk_1 } }{8\omega _m }+\frac{K_{kn_1 } R_{n_1 } }{32\omega _m \omega _n^2 }+\frac{K_{km_1 } R_{m_1 } }{32\omega _m^3 }} \right) \nonumber \\&-\left( {\frac{K_{mmm_1 } }{8\omega _m }+\frac{K_{km_1 } R_{k_1 } }{32\omega _k^2 \omega _m }} \right) \left( {q_m^3 +p_m^2 q_m } \right) \nonumber \\&-\left( {q_n p_k^2 +q_k^2 q_n } \right) \left( {\frac{K_{knk_1 } }{8\omega _m }+\frac{K_{kn_1 } R_{n_2 } }{32\omega _m \omega _n^2 }+\frac{K_{km_1 } R_{m_2 } }{32\omega _m^3 }} \right) \nonumber \\&+\,\frac{R_{m_2 } }{4\omega _m }\left( {p_k q_n -p_n q_k } \right) \end{aligned}$$
(D.4)
$$\begin{aligned} \frac{\mathrm{d}q_m }{\mathrm{d}t}= & {} -\mu q_m +\left( {\frac{\mu ^{2}}{2\omega _m }+\sigma _1 -\frac{F_{m_2 } }{2\omega _m }+\frac{F_{k_1 } K_{km_1 } }{8\omega _k^2 \omega _m }} \right) p_m \nonumber \\&+\,\left( {\frac{F_{k_1 } K_{kn_1 } }{8\omega _k^2 \omega _m }-\frac{F_{mn_1 } }{2\omega _m }} \right) p_n +\frac{F_{m_1 } }{\omega _m } \nonumber \\&+\,\left( {\frac{F_{n_1 } K_{kn_1 } }{8\omega _m \omega _n^2 }-\frac{F_{mk} }{\omega _m }+\frac{F_{m_1 } K_{km_1 } }{8\omega _m^3 }} \right) p_k \nonumber \\&+\,\frac{R_{m_1 } }{4\omega _m }\left( {p_k p_m +q_k q_m } \right) +\frac{R_{m_2 } }{4\omega _m }\left( {p_k p_n +q_k q_n } \right) \nonumber \\&+\,\left( {\frac{\mu K_{kn_1 } }{8\omega _k \omega _m }-\frac{\mu K_{kn_1 } }{8\omega _m \omega _n }-\frac{\mu R_{m_2 } }{8\omega _m^2 }} \right) \left( {p_k q_n -p_n q_k } \right) \nonumber \\&+\,\left( {\frac{\mu K_{km_1 } }{8\omega _k \omega _m }-\frac{\mu K_{km_1 } }{8\omega _m^2 }-\frac{\mu R_{m_1 } }{8\omega _m^2 }} \right) \left( {p_k q_m -q_k p_m } \right) \nonumber \\&+\,\left( {\frac{K_{nnm_1 } }{4\omega _m }+\frac{K_{km_1 } R_{k_3 } }{16\omega _k^2 \omega _m }} \right) p_n q_m q_n \nonumber \\&+\,\left( {\frac{K_{kn_1 } R_{k_2 } }{32\omega _k^2 \omega _m }+\frac{K_{km_1 } R_{k_3 } }{32\omega _k^2 \omega _m }} \right) \left( {p_n^2 p_m +q_n^2 p_m } \right) \nonumber \\&+\,\left( {\frac{K_{kn_1 } R_{k_1 } }{32\omega _k^2 \omega _m }+\frac{K_{mmn_1 } }{8\omega _m }} \right) \left( {p_n p_m^2 -p_n q_m^2 } \right) \nonumber \\&+\,\left( {\frac{K_{mnn_1 } }{8\omega _m }+\frac{K_{nnm_1 } }{8\omega _m }} \right) \left( {p_n^2 p_m -q_n^2 p_m } \right) \nonumber \\&+\,\left( {\frac{K_{mnm_1 } }{8\omega _m }\frac{K_{km_1 } R_{k_2 } }{32\omega _k^2 \omega _m }} \right) \left( {p_n p_m^2 +p_n q_m^2 } \right) \nonumber \\&+\,\left( {\frac{K_{mmm_1 } }{8\omega _m }+\frac{K_{km_1 } R_{k_1 } }{32\omega _k^2 \omega _m }} \right) \left( {p_m^3 +q_m^2 p_m } \right) \nonumber \\&+\,\left( {\frac{K_{mmn_1 } }{4\omega _m }+\frac{K_{kn_1 } R_{k_1 } }{16\omega _k^2 \omega _m }} \right) q_m q_n p_m \nonumber \\&+\,\left( {\frac{K_{nnn_1 } }{8\omega _m }+\frac{K_{kn_1 } R_{k_3 } }{32\omega _k^2 \omega _m }} \right) \left( {p_n^3 +q_n^2 p_n } \right) \nonumber \\&+\,\left( {\frac{K_{kmk_1 } }{8\omega _m }+\frac{K_{kn_1 } R_{n_1 } }{32\omega _m \omega _n^2 }+\frac{K_{km_1 } R_{m_1 } }{32\omega _m^3 }} \right) \nonumber \\&\left( {p_m p_k^2 +p_m q_k^2 } \right) \nonumber \\&+\,\left( {\frac{K_{knk_1 } }{8\omega _m }+\frac{K_{kn_1 } R_{n_2 } }{32\omega _m \omega _n^2 }+\frac{K_{km_1 } R_{m_2 } }{32\omega _m^3 }} \right) \nonumber \\&\left( {p_n p_k^2 +p_n q_k^2 } \right) \end{aligned}$$
(D.5)
$$\begin{aligned} \frac{\mathrm{d}p_n }{\mathrm{d}t}= & {} -\mu p_n \nonumber \\&+\,q_n \left( {\frac{F_{k_1 } S_{kn_1 } }{8\omega _k^2 \omega _n }-\frac{\mu ^{2}}{2\omega _n }-\sigma _1 +\sigma _2 -\frac{F_{n_2 } }{2\omega _n }} \right) \nonumber \\&+\,\left( {\frac{F_{k_1 } S_{km_1 } }{8\omega _k^2 \omega _n }-\frac{F_{mn_1 } }{2\omega _n }} \right) q_m \nonumber \\&+\,\left( {\frac{F_{nk} }{\omega _n }-\frac{F_{m_1 } S_{km_1 } }{8\omega _m^2 \omega _n }-\frac{F_{n_1 } S_{kn_1 } }{8\omega _n^3 }} \right) q_k \nonumber \\&+\,\left( {\frac{\mu R_{n_2 } }{8\omega _n^2 }-\frac{\mu S_{kn_1 } }{8\omega _k \omega _n }+\frac{\mu S_{kn_1 } }{8\omega _n^2 }} \right) \left( {p_k p_n +q_k q_n } \right) \nonumber \\&+\,\left( {\frac{\mu R_{n_1 } }{8\omega _n^2 }-\frac{\mu S_{km_1 } }{8\omega _k \omega _n }+\frac{\mu S_{km_1 } }{8\omega _m \omega _n }} \right) \left( {p_k p_m +q_k q_m } \right) \nonumber \\&+\,\frac{R_{n_1 } }{4\omega _n }\left( {p_k q_m -q_k p_m } \right) \nonumber \\&+\,\frac{R_{n_2 } }{4\omega _n }\left( {p_k q_n -p_n q_k } \right) \nonumber \\&+\,\left( {\frac{S_{mmn_1 } }{8\omega _n }-\frac{S_{mnm_1 } }{8\omega _n }-\frac{R_{k_2 } S_{km_1 } }{32\omega _k^2 \omega _n }++\frac{R_{k_1 } S_{kn_1 } }{32\omega _k^2 \omega _n }} \right) p_m^2 q_n \nonumber \\&-\left( {\frac{R_{k_1 } S_{km_1 } }{32\omega _k^2 \omega _n }+\frac{S_{mmm_1 } }{8\omega _n }} \right) \left( {q_m^3 +p_m^2 q_m } \right) \nonumber \\&-\left( {\frac{R_{k_1 } S_{kn_1 } }{16\omega _k^2 \omega _n }+\frac{S_{mmn_1 } }{4\omega _n }} \right) p_m p_n q_m \nonumber \\&-\left( {\frac{R_{k_3 } S_{kn_1 } }{32\omega _k^2 \omega _n }+\frac{S_{nnn_1 } }{8\omega _n }} \right) \left( {q_n^3 +p_n^2 q_n } \right) \nonumber \\&-\left( {\frac{R_{k_3 } S_{km_1 } }{16\omega _k^2 \omega _n }+\frac{S_{nnm_1 } }{4\omega _n }} \right) p_n q_n p_m \nonumber \\&+\,\left( {\frac{R_{k_2 } S_{km_1 } }{32\omega _k^2 \omega _n }+\frac{S_{mmn_1 } }{8\omega _n }+\frac{S_{mnm_1 } }{8\omega _n }+\frac{R_{k_1 } S_{kn_1 } }{32\omega _k^2 \omega _n }} \right) q_m^2 q_n \nonumber \\&-\left( {\frac{R_{k_3 } S_{km_1 } }{32\omega _k^2 \omega _n }+\frac{S_{mnn_1 } }{8\omega _n }+\frac{S_{nnm_1 } }{8\omega _n }+\frac{R_{k_2 } S_{kn_1 } }{32\omega _k^2 \omega _n }} \right) q_m q_n^2 \nonumber \\&+\,p_n^2 q_m \left( {\frac{R_{k_3 } S_{km_1 } }{32\omega _k^2 \omega _n }-\frac{S_{mnn_1 } }{8\omega _n }+\frac{S_{nnm_1 } }{8\omega _n }-\frac{R_{k_2 } S_{kn_1 } }{32\omega _k^2 \omega _n }} \right) \nonumber \\&-\left( {\frac{R_{m_1 } S_{km_1 } }{32\omega _m^2 \omega _n }+\frac{S_{kmk_1 } }{8\omega _n }+\frac{R_{n_1 } S_{kn_1 } }{32\omega _n^3 }} \right) \left( {q_m p_k^2 +q_k^2 q_m } \right) \nonumber \\&-\left( {\frac{R_{m_2 } S_{km_1 } }{32\omega _m^2 \omega _n }+\frac{S_{knk_1 } }{8\omega _n }+\frac{R_{n_2 } S_{kn_1 } }{32\omega _n^3 }} \right) \nonumber \\&\left( {q_n p_k^2 +q_k^2 q_n } \right) +\frac{\mu F_{n_1 } }{2\omega _n^2 } \end{aligned}$$
(D.6)
$$\begin{aligned} \frac{\mathrm{d}q_n }{\mathrm{d}t}= & {} -\mu q_n \nonumber \\&+\,p_n \left( {\frac{\mu ^{2}}{2\omega _n }+\sigma _1 -\sigma _2 -\frac{F_{n_2 } }{2\omega _n }+\frac{F_{k_1 } S_{kn_1 } }{8\omega _k^2 \omega _n }} \right) \nonumber \\&+\,\left( {\frac{F_{k_1 } S_{km_1 } }{8\omega _k^2 \omega _n }-\frac{F_{mn_1 } }{2\omega _n }} \right) p_m \nonumber \\&+\,\left( {\frac{F_{m_1 } S_{km_1 } }{8\omega _m^2 \omega _n }-\frac{F_{nk} }{\omega _n }+\frac{F_{n_1 } S_{kn_1 } }{8\omega _n^3 }} \right) p_k \nonumber \\&+\,\left( {\frac{\mu R_{n_2 } }{8\omega _n^2 }-\frac{\mu S_{kn_1 } }{8\omega _k \omega _n }+\frac{\mu S_{kn_1 } }{8\omega _n^2 }} \right) \left( {p_n q_k -p_k q_n } \right) \nonumber \\&+\,\left( {\frac{\mu R_{n_1 } }{8\omega _n^2 }-\frac{\mu S_{km_1 } }{8\omega _k \omega _n }+\frac{\mu S_{km_1 } }{8\omega _m \omega _n }} \right) \left( {q_k p_m -p_k q_m } \right) \nonumber \\&+\,\frac{R_{n_1 } }{4\omega _n }\left( {p_k p_m +q_k q_m } \right) \nonumber \\&+\,\frac{R_{n_2 } }{4\omega _n }\left( {p_k p_n +q_k q_n } \right) \nonumber \\&+\,\left( {\frac{R_{k_2 } S_{km_1 } }{32\omega _k^2 \omega _n }+\frac{S_{mnm_1 } }{8\omega _n }} \right) \left( {p_n p_m^2 +p_n q_m^2 } \right) \nonumber \\&+\,\left( {\frac{S_{mmn_1 } }{8\omega _n }+\frac{R_{k_1 } S_{kn_1 } }{32\omega _k^2 \omega _n }} \right) \left( {p_n p_m^2 -p_n q_m^2 } \right) \nonumber \\&+\,\left( {\frac{S_{mnn_1 } }{8\omega _n }+\frac{R_{k_2 } S_{kn_1 } }{32\omega _k^2 \omega _n }} \right) \left( {p_m p_n^2 +p_m q_n^2 } \right) \nonumber \\&+\,\left( {\frac{R_{k_3 } S_{km_1 } }{32\omega _k^2 \omega _n }+\frac{S_{nnm_1 } }{8\omega _n }} \right) \left( {p_m p_n^2 -p_m q_n^2 } \right) \nonumber \\&+\,\left( {\frac{R_{k_1 } S_{kn_1 } }{16\omega _k^2 \omega _n }+\frac{S_{mmn_1 } }{4\omega _n }} \right) p_m q_m q_n \nonumber \\&+\,\left( {\frac{R_{k_3 } S_{km_1 } }{16\omega _k^2 \omega _n }+\frac{S_{nnm_1 } }{4\omega _n }} \right) p_n q_m q_n \nonumber \\&+\,\left( {p_m^3 +q_m^2 p_m } \right) \left( {\frac{R_{k_1 } S_{km_1 } }{32\omega _k^2 \omega _n }+\frac{S_{mmm_1 } }{8\omega _n }} \right) \nonumber \\&+\,\left( {\frac{R_{k_3 } S_{kn_1 } }{32\omega _k^2 \omega _n }+\frac{S_{nnn_1 } }{8\omega _n }} \right) \left( {p_n^3 +q_n^2 p_n } \right) \nonumber \\&+\,\left( {\frac{R_{m_1 } S_{km_1 } }{32\omega _m^2 \omega _n }+\frac{S_{kmk_1 } }{8\omega _n }+\frac{R_{n_1 } S_{kn_1 } }{32\omega _n^3 }} \right) \nonumber \\&\left( {p_m p_k^2 +p_m q_k^2 } \right) \nonumber \\&+\,\left( {\frac{R_{m_2 } S_{km_1 } }{32\omega _m^2 \omega _n }+\frac{S_{knk_1 } }{8\omega _n }+\frac{R_{n_2 } S_{kn_1 } }{32\omega _n^3 }} \right) \nonumber \\&\left( {p_n p_k^2 +p_n q_k^2 } \right) +\frac{F_{n_1 } }{\omega _n } \end{aligned}$$
(D.7)
$$\begin{aligned} \frac{\mathrm{d}p_k }{\mathrm{d}t}= & {} -\mu p_k +\left( {2\sigma _2 -2\sigma _1 +\sigma _3 -\frac{\mu ^{2}}{2\omega _k }} \right) q_k \nonumber \\&+\,q_m \left( {\frac{F_{mk} }{\omega _k }-\frac{F_{m_1 } T_{mm} }{8\omega _k \omega _m^2 }-\frac{F_{n_1 } T_{nm} }{8\omega _k \omega _n^2 }} \right) \nonumber \\&+\,q_n \left( {\frac{F_{nk} }{\omega _k }-\frac{F_{m_1 } T_{nm} }{8\omega _k \omega _m^2 }-\frac{F_{n_1 } T_{nn} }{8\omega _k \omega _n^2 }} \right) \nonumber \\&-\left( {\frac{T_{kmm} }{8\omega _k }+\frac{R_{m_1 } T_{mm} }{32\omega _k \omega _m^2 }+\frac{R_{n_1 } T_{nm} }{32\omega _k \omega _n^2 }} \right) \nonumber \\&\left( {q_k p_m^2 +q_k q_m^2 } \right) \nonumber \\&+\,\left( {\frac{\mu R_{k_2 } }{8\omega _k^2 }-\frac{\mu T_{nm} }{8\omega _k \omega _m }-\frac{\mu T_{nm} }{8\omega _k \omega _n }} \right) \left( {p_m p_n -q_m q_n } \right) \nonumber \\&-\frac{R_{k_2 } }{4\omega _k }\left( {p_n q_m +p_m q_n } \right) -\frac{R_{k_1 } }{2\omega _k }p_m q_m \nonumber \\&+\,\left( {\frac{\mu R_{k_1 } }{8\omega _k^2 }-\frac{\mu T_{mm} }{8\omega _k \omega _m }} \right) \left( {p_m^2 -q_m^2 } \right) \nonumber \\&+\,\left( {\frac{\mu R_{k_3 } }{8\omega _k^2 }-\frac{\mu T_{nn} }{8\omega _k \omega _n }} \right) \left( {p_n^2 -q_n^2 } \right) \nonumber \\&-\frac{T_{kkk} }{8\omega _k }\left( {p_k^2 q_k +q_k^3 } \right) \nonumber \\&-\left( \frac{T_{kmn} }{8\omega _k }+\frac{T_{knm} }{8\omega _k }+\frac{R_{m_2 } T_{mm} }{32\omega _k \omega _m^2 }+\frac{R_{m_1 } T_{nm} }{32\omega _k \omega _m^2 }\right. \nonumber \\&\left. +\,\frac{R_{n_2 } T_{nm} }{32\omega _k \omega _n^2 }+\frac{R_{n_1 } T_{nn} }{32\omega _k \omega _n^2 } \right) \left( {q_k p_m p_n +q_k q_m q_n } \right) \nonumber \\&+\,\left( \frac{T_{kmn} }{8\omega _k }-\frac{T_{knm} }{8\omega _k }+\frac{R_{m_2 } T_{mm} }{32\omega _k \omega _m^2 }-\frac{R_{m_1 } T_{nm} }{32\omega _k \omega _m^2 }+\frac{R_{n_2 } T_{nm} }{32\omega _k \omega _n^2 }\right. \nonumber \\&\left. -\frac{R_{n_1 } T_{nn} }{32\omega _k \omega _n^2 } \right) \left( {p_k p_m q_n -p_k p_n q_m } \right) \nonumber \\&-\left( {\frac{T_{knn} }{8\omega _k }+\frac{R_{m_2 } T_{nm} }{32\omega _k \omega _m^2 }+\frac{R_{n_2 } T_{nn} }{32\omega _k \omega _n^2 }} \right) \left( {p_n^2 q_k +q_n^2 q_k } \right) \nonumber \\&-\frac{R_{k_3 } }{2\omega _k }p_n q_n +\frac{\mu F_{k_1 } }{2\omega _k^2 } \\ \frac{\mathrm{d}q_k }{\mathrm{d}t}= & {} -\mu q_k +\left( {\frac{\mu ^{2}}{2\omega _k }+2\sigma _1 -2\sigma _2 -\sigma _3 } \right) p_k \nonumber \\&+\,\left( {\frac{F_{m_1 } T_{mm} }{8\omega _k \omega _m^2 }+\frac{F_{n_1 } T_{nm} }{8\omega _k \omega _n^2 }-\frac{F_{mk} }{\omega _k }} \right) p_m \nonumber \end{aligned}$$
(D.8)
$$\begin{aligned}&+\,\left( {\frac{\mu R_{k_1 } }{4\omega _k^2 }-\frac{\mu T_{mm} }{4\omega _k \omega _m }} \right) p_m q_m \nonumber \\&+\,\left( {\frac{\mu R_{k_3 } }{4\omega _k^2 }-\frac{\mu T_{nn} }{4\omega _k \omega _n }} \right) p_n q_n +\frac{R_{k_2 } }{4\omega _k }\left( {p_m p_n -q_m q_n } \right) \nonumber \\&+\,\frac{R_{k_1 } }{4\omega _k }\left( {p_m^2 -q_m^2 } \right) +\frac{R_{k_3 } }{4\omega _k }\left( {p_n^2 -q_n^2 } \right) \nonumber \\&+\,\left( {\frac{\mu R_{k_2 } }{8\omega _k^2 }-\frac{\mu T_{nm} }{8\omega _k \omega _m }-\frac{\mu T_{nm} }{8\omega _k \omega _n }} \right) \left( {p_n q_m +p_m q_n } \right) \nonumber \\&+\,\left( {\frac{T_{kmm} }{8\omega _k }+\frac{R_{m_1 } T_{mm} }{32\omega _k \omega _m^2 }+\frac{R_{n_1 } T_{nm} }{32\omega _k \omega _n^2 }} \right) \left( {p_k p_m^2 +p_k q_m^2 } \right) \nonumber \\&+\,\left( {\frac{T_{knn} }{8\omega _k }+\frac{R_{m_2 } T_{nm} }{32\omega _k \omega _m^2 }+\frac{R_{n_2 } T_{nn} }{32\omega _k \omega _n^2 }} \right) \left( {p_k p_n^2 +p_k q_n^2 } \right) \nonumber \\&+\,\left( {\frac{T_{kmn} }{8\omega _k }+\frac{R_{m_2 } T_{mm} }{32\omega _k \omega _m^2 }+\frac{R_{n_2 } T_{nm} }{32\omega _k \omega _n^2 }} \right) \nonumber \\&\left( {\left( {p_k p_m p_n +p_k q_m q_n } \right) +\left( {p_m q_k q_n -p_n q_k q_m } \right) } \right) \nonumber \\&+\,\left( {\frac{T_{knm} }{8\omega _k }+\frac{R_{m_1 } T_{nm} }{32\omega _k \omega _m^2 }+\frac{R_{n_1 } T_{nn} }{32\omega _k \omega _n^2 }} \right) \nonumber \\&\left( {\left( {p_k p_m p_n +p_k q_m q_n } \right) -\left( {p_m q_k q_n -p_n q_k q_m } \right) } \right) \nonumber \\&+\,\frac{T_{kkk} }{8\omega _k }\left( {p_k^3 +q_k^2 p_k } \right) +\frac{F_{k_1 } }{\omega _k }\nonumber \\&+\,\left( {\frac{F_{m_1 } T_{nm} }{8\omega _k \omega _m^2 }+\frac{F_{n_1 } T_{nn} }{8\omega _k \omega _n^2 }-\frac{F_{nk} }{\omega _k }} \right) p_n\end{aligned}$$
(D.9)

where the values of \(\lambda _1 \), \(\lambda _2\), and \(\lambda _3 \) are \(\lambda _1 =\sigma _1\), \(\lambda _2 =\sigma _1 -\sigma _2\), and \(\lambda _3 =2\sigma _1 -2\sigma _2 -\sigma _3 \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajjaj, A.Z., Alfosail, F.K., Jaber, N. et al. Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator: part II—simultaneous 1:1 and 2:1 internal resonances. Nonlinear Dyn 99, 407–432 (2020). https://doi.org/10.1007/s11071-019-05242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05242-9

Keywords

Navigation