Skip to main content

Advertisement

Log in

Unidirectional energy transport in the symmetric system of non-linearly coupled oscillators and oscillatory chains

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the present paper, we study the fundamental mechanism of unidirectional energy transport in the symmetric, weakly dissipative system of two coupled nonlinear oscillators and weakly coupled oscillatory chains. We demonstrate that under particular choice of system parameters the model under consideration allows the irreversible transfer of energy from the initially excited oscillator to the initially resting one. In the second part of the paper, we implement the mechanism for control of spatially localized nonlinear waves (discrete breathers) in weakly dissipative, coupled oscillatory chains. This mechanism is implemented on the symmetric system of two weakly dissipative, non-linearly coupled oscillatory chains. Using the regular multi-scale asymptotic analysis, we derive the slow flow system. Further applying the method of collective coordinates on the slow flow system, we were able to describe analytically the mechanism of unidirectional inter-chain transport of static breathers. In general, the analytical method developed in the paper allows one to predict the special regions in the parametric space corresponding to the formation of the aforementioned regimes of irreversible energy transfer in the system of non-linearly coupled oscillators and oscillatory chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Scott, A.: Emergence and Dynamics of Coherent Structures, in Nonlinear Science. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  2. Hodges, C.: Confinement of vibration by structural irregularity. J. Sound Vib. 82, 411–424 (1982)

    Google Scholar 

  3. Pierre, C., Dowell, E.H.: Localization of vibrations by structural irregularity. J. Sound Vib. 114, 549–564 (1987)

    Google Scholar 

  4. Bendiksen, O.: Mode localization phenomena in large space structures. AIAA J. 25, 1241–1248 (1987)

    Google Scholar 

  5. Cai, C.W., Chan, H.C., Cheung, Y.K.: Localized modes in a two-degree-coupling periodic system with a nonlinear disordered subsystem. Chaos Solitons Fractals 11, 1481–1492 (2000)

    MATH  Google Scholar 

  6. Gendelman, O., Manevitch, L.I., Vakakis, A.F., M’Closkey, R.: Energy pumping in nonlinear mechanical oscillators: part I—dynamics of underlying Hamiltonian systems. Appl. Mech. 68(1), 34 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Gendelman, O., Vakakis, A.F.: Transition from localization to nonlocalization in strongly nonlinear damped oscillators. Chaos Solitons Fractals 11, 1535–1542 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J Vib Acoust Trans ASME 123(3), 324–332 (2001)

    Google Scholar 

  9. Gendelman, O.V.: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 25(1–3), 237–253 (2001)

    MATH  Google Scholar 

  10. Vakakis, A.F., Gendelman, O.V.: Energy Pumping in nonlinear mechanical oscillators: part II—resonance capture. Appl. Mech. 68(1), 42 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Vakakis, A., Gendelman, O.V., Bergman, L., McFarland, M., Kerschen, G., Lee, Y.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, New York (2008)

    MATH  Google Scholar 

  12. McFarland, D.M., Bergman, L., Vakakis, A.: Experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Non-Linear Mech. 40, 891–899 (2005)

    MATH  Google Scholar 

  13. McFarland, D.M., Kerschen, G., Kowtko, J., Lee, Y.S., Bergman, L.A., Vakakis, A.F.: Experimental investigation of targeted energy transfers in strongly and nonlinearly coupled oscillators. J. Acoust. Soc. Am. 118, 791–799 (2005)

    Google Scholar 

  14. Manevitch, L.I.: New approach to beating phenomenon in coupled nonlinear oscillatory chains. Arch. Appl. Mech. 77(5), 301–312 (2007)

    MATH  Google Scholar 

  15. Manevitch, L.I., Gendelman, O.: Tractable Models of Solid Mechanics. Springer, Berlin (2011)

    MATH  Google Scholar 

  16. Manevitch, L.I., Musienko, A.I.: Limiting phase trajectories and energy exchange between anharmonic oscillator and external force. Nonlinear Dyn. 58(4), 633–642 (2009)

    MATH  Google Scholar 

  17. Manevitch, L.I., Smirnov, V.V.: Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains. Phys. Rev. E 82(3), 036602 (2010)

    MathSciNet  Google Scholar 

  18. Manevitch, L.I., Kovaleva, A.S., Shepelev, D.S.: Non-smooth approximations of the limiting phase trajectories for the Duffing oscillator near 1:1 resonance. Phys. D Nonlinear Phenom. 240(1), 1–12 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Kovaleva, A., Manevitch, L.I., Manevitch, E.L.: Intense energy transfer and superharmonic resonance in a system of two coupled oscillators. Phys. Rev. E 81, 056215 (2010)

    MATH  Google Scholar 

  20. Smirnov, V.V., Manevitch, L.I.: Limiting phase trajectories and dynamic transition in nonlinear periodic systems. Acoust. Phys. 57(271), 271–276 (2011)

    Google Scholar 

  21. Smirnov, V.V., Shepelev, D.S., Manevitch, L.I.: Energy exchange and transition to localization in the asymmetric Fermi–Pasta–Ulam oscillatory chain. Eur. Phys. J. B 86, 10 (2013)

    MathSciNet  Google Scholar 

  22. Manevitch, L.I., Smirnov, V.V.: Resonant energy exchange in nonlinear oscillatory chains and Limiting phase trajectories: from small to large systems. In: Vakakis, A.F. (ed.) Advanced Nonlinear Strategies for Vibration Mitigation and System Identification, vol. 518, pp. 207–258. CISM International Centre for Mechanical Sciences, Udine (2010)

    Google Scholar 

  23. Manevitch, L.I., Kovaleva, A.S., Manevitch, E.L., Shepelev, D.S.: Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 1. A non-dissipative oscillator. Commun. Nonlinear Sci. Numer. Simul. 16(2), 1089–1097 (2011)

    MATH  Google Scholar 

  24. Manevitch, L.I., Kovaleva, A.S., Manevitch, E.L., Shepelev, D.S.: Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 2: a dissipative oscillator. Commun. Nonlinear Sci. Numer. Simulat. 16, 1089–1097 (2011)

    MATH  Google Scholar 

  25. Manevitch, L.I.: Energy exchange, localization, and transfer in nanoscale systems (weak-coupling approximation). Russ. J. Phys. Chem. B 6, 563–581 (2012)

    Google Scholar 

  26. Manevitch, L.I., Kovaleva, A.: Nonlinear energy transfer in classical and quantum systems. Phys. Rev. E 87(2), 22904 (2013)

    Google Scholar 

  27. Kovaleva, A., Manevitch, L.I.: Resonance energy transport and exchange in oscillator arrays. Phys. Rev. E 88(2), 022904 (2013)

    Google Scholar 

  28. Starosvetsky, Y., Ben Meir, Y.: Nonstationary regimes of homogeneous Hamiltonian systems in the state of sonic vacuum. Phys. Rev. E 87(6), 062919 (2013)

    Google Scholar 

  29. Manevitch, L.I., Kosevich, Y.A., Mane, M., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Towards a new type of energy trap: classical analog of quantum Landau–Zener tunneling. Int. J. Non-Linear Mech. 46(1), 247–252 (2011)

    Google Scholar 

  30. Kovaleva, A., Manveitch, L.I., Kosevich, Y.A.: Fresnel integrals and irreversible energy transfer in an oscillatory system with time-dependent parameters. Phys. Rev. E 83, 026602 (2011)

    Google Scholar 

  31. Kovaleva, A., Manevitch, L.I.: Classical analog of quasilinear Landau-Zener tunneling. Phys. Rev. E 85, 016202 (2012)

    Google Scholar 

  32. Hasan, M.A., Starosvetsky, Y., Vakakis, A.F., Manevitch, L.I.: Nonlinear targeted energy transfer and macroscopic, analog of the quantum Landau–Zener effect in coupled granular chains. Phys. D 252, 46–58 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Kovaleva, A., Manevitch, L.I.: Limiting phase trajectories and emergence of autoresonance in nonlinear oscillators. Phys. Rev. E 88, 024901 (2013)

    Google Scholar 

  34. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

    Google Scholar 

  35. Kislovsky, V., Kovaleva, M., Jayaprakash, K.R., Starosvetsky, Y.: Consecutive transitions from localized to delocalized transport states in anharmonic chain of three coupled oscillators. Chaos Interdiscip. J. Nonlinear Sci. 26(7), 73102 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Starosvetsky, Y., Hasan, M.A., Vakakis, A.F., Manevitch, L.I.: Strongly nonlinear beat phenomena and energy exchanges in weakly coupled granular chains on elastic foundations. SIAM J. Appl. Math. 72(1), 337–361 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Smirnov, V.V., Manevich, L.I.: Limiting phase trajectories and dynamic transitions in nonlinear periodic systems. Acoust. Phys. 57(2), 271–276 (2011)

    Google Scholar 

  38. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., Mcfarland, D.M., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Berlin (2009)

    MATH  Google Scholar 

  39. Vakakis, A.F.: Advanced Nonlinear Strategies for Vibration Mitigation and System Identification. Springer, Berlin (2010)

    Google Scholar 

  40. Wierschem, N.E., Luo, J., Al-Shudeifat, M., Hubbard, S., Ott, R., Fahnestock, L.A., Quinn, D.D., Mcfarland, D.M., Spencer Jr., B.F., Vakakis, A.F., Bergman, L.A.: Experimental testing and numerical simulation of a six-story structure incorporating two-degree-of-freedom nonlinear energy sink. J. Struct. Eng. 140(6), 1–10 (2014)

    Google Scholar 

  41. Luo, J., Wierschen, N.E., Hubbard, S.A., Fahnestock, L.A., Quinn, D.D., Mcfarland, D.M., Spencer Jr., B.F., Vakakis, A.F., Bergman, L.A.: Large-scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation. Eng. Struct. 77, 34–48 (2014)

    Google Scholar 

  42. Gendelman, O.V., Gorlov, D.V., Manevitch, L.I., Musienko, A.I.: Dynamics of coupled linear and essentially nonlinear oscillators with substantially different masses. J. Sound Vib. 286(1–2), 1–19 (2005)

    Google Scholar 

  43. Hasan, M.A., Cho, S., Remick, K., Vakakis, A.F., Mcfarland, D.M., Kriven, W.M.: Primary pulse transmission in coupled steel granular chains embedded in PDMS matrix: experiment and modeling. Int. J. Solids Struct. 50(20–21), 3207–3224 (2013)

    Google Scholar 

  44. Porter, M.A., Daraio, C., Herbold, E.B., Szekengowicz, I., Kevrekidis, P.G.: Highly nonlinear solitary waves in periodic dimer granular chains. Phys. Rev. E 77, 01560 (2008)

    Google Scholar 

  45. Porter, M.A., Daraio, C., Szelengowicz, I., Herbold, E.B., Kevrekidis, P.G.: Highly nonlinear solitary waves in heterogeneous periodic granular media. Phys. D 238(6), 666–676 (2009)

    MATH  Google Scholar 

  46. Yang, J., Dunatunga, S., Daraio, C.: Amplitude-dependent attenuation of compressive waves. Acta Mech. 223(3), 549–562 (2012)

    MATH  Google Scholar 

  47. Manevitch, L.I.: New approach to beating phenomenon in coupled nonlinear oscillatory chains. Arch. Appl. Mech. 77(5), 301–312 (2007)

    MATH  Google Scholar 

  48. James, G., Kevrekidis, P.G., Cuevas, J.: Breathers in oscillator chains with Hertzian interactions. Phys. Nonlinear Phenom. 251, 39–59 (2013)

    MathSciNet  MATH  Google Scholar 

  49. James, G., Starosvetsky, Y.: Breather solutions of the discrete p-Schrodinger equation. In: Luo, A.C.J., Carretero-Gonzalez, R, Cuevas-Maraver, J., Frantzeskakis, D., Karachalios, N., Kevrekidis, P., Palmero-Acebedo, F. (eds.) Localized Excitations in Nonlinear Complex Systems, pp. 77–115. Springer, Berlin (2013)

  50. James, G.: Nonlinear waves in Newton’s cradle and the discrete p-Schrodinger equation. Math. Models Methods Appl. Sci. 21(11), 2335–2377 (2011)

    MathSciNet  MATH  Google Scholar 

  51. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publication Inc, New York (1970)

    MATH  Google Scholar 

Download references

Acknowledgements

V. K. and Y. S. are grateful to Israel Science Foundation (Grant No. 1079/16) for financial support. M.K. is thankful to Russian Foundation for Basic Research (Grant No. 18-03-00716) for financial support. We thank O. Gendelman for fruitful discussions in the course of preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yacobi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Projection of the resonant nonlinear terms for the resonant conditions brought in (8).

Complexification and averaging are obtained via the following integral expression:

$$\begin{aligned} \left\langle f \right\rangle= & {} \frac{1}{2\pi }\int _0^{2\pi } {f\left( {x\left( {\varphi e^{it},\varphi ^{*}e^{-it}} \right) } \right) e^{-it}\mathrm{d}t} \nonumber \\\equiv & {} \frac{i\gamma }{2}\varphi \left| \varphi \right| ^{a},\quad \gamma ,a>0. \end{aligned}$$
(50)

The pure imaginary constant \(\frac{i\gamma }{2}\) was added due to the Hamiltonian structure of the conservative force. 1 / 2 was added due to the averaging of the linear term, and \(\,\gamma >0\) because the force is of the restoring type. We need to calculate the parameter \(\gamma \). The complex representation of the displacement is \(x=\frac{-i}{2}\left( {\varphi e^{it}-\varphi ^{*}e^{-it}} \right) \,\) where \(\varphi =\varphi \left( {\tau _{1} } \right) =\left| \varphi \right| e^{i\lambda }\) is the zero order of the asymptotic approximation with the amplitude \(A\left( {\tau _{1} } \right) =\left| \varphi \right| \) and the phase \(angle\left( \varphi \right) =\lambda \left( {\tau _{1} } \right) \). Both amplitude and phase vary on the slow timescale \(\tau _{1} =\varepsilon t\). Substituting the complex form in (50) leads to the following expression of the force,

$$\begin{aligned}&f=-x\left| x \right| ^{a}=-\left( {\frac{-i}{2}} \right) \frac{1}{2^{a}}\left( {\varphi e^{it}-\varphi ^{*}e^{-it}} \right) \nonumber \\&\qquad \left| {\varphi e^{it}-\varphi ^{*}e^{-it}} \right| ^{a}\nonumber \\&\quad =\frac{i}{2}\left( {\varphi e^{it}-\varphi ^{*}e^{-it}} \right) \left| \varphi \right| ^{a}\left| {\sin \left( {\lambda +t} \right) } \right| ^{a} \end{aligned}$$
(51)

or

$$\begin{aligned} f=-\left| \varphi \right| ^{a+1}\left| {\sin \left( {\lambda +t} \right) } \right| ^{a}\sin \left( {\lambda +t} \right) , \end{aligned}$$
(52)

where the non-smooth expression was simplified as follows:

$$\begin{aligned} \frac{1}{2^{a}}\left| {\varphi e^{it}-\varphi ^{*}e^{-it}} \right| ^{a}= & {} \frac{1}{2^{a}}\left| \varphi \right| ^{a}\left| {e^{it}e^{i\lambda }-e^{-it}e^{-i\lambda }} \right| ^{a}\nonumber \\= & {} \left| \varphi \right| ^{a}\left| {\sin \left( {\lambda +t} \right) } \right| ^{a} \end{aligned}$$
(53)

and the smooth term can be transformed in the similar way,

$$\begin{aligned} \frac{i}{2}\left( {\varphi e^{it}-\varphi ^{*}e^{-it}} \right) =-\left| \varphi \right| \sin \left( {\lambda +t} \right) . \end{aligned}$$
(54)

By direct substitution of (52) or (54) into the integral yields the following expression,

$$\begin{aligned} \left\langle f \right\rangle= & {} \frac{1}{2\pi }\frac{i}{2}\left| \varphi \right| ^{a}\int _0^{2\pi } {\left( {\varphi e^{it}-\varphi ^{*}e^{-it}} \right) } e^{-it}\nonumber \\&\left| {\sin \left( {\lambda +t} \right) } \right| ^{a}\mathrm{d}t; \nonumber \\ \left\langle f \right\rangle= & {} \frac{-1}{2\pi }\left| \varphi \right| ^{a+1}\int _0^{2\pi } {\sin \left( {\lambda +t} \right) } e^{-it}\nonumber \\&\left| {\sin \left( {\lambda +t} \right) } \right| ^{a}\mathrm{d}t. \end{aligned}$$
(55)

Thus, we need to evaluate the integral \(I=\int _0^{2\pi } {\sin \left( {\lambda + t} \right) }\)\(\left| {\sin \left( {\lambda +t} \right) } \right| ^{a}e^{-it}\mathrm{d}t\). Transforming

$$\begin{aligned}&u=\lambda +t;\nonumber \\&-t=-u+\lambda ; \nonumber \\&\mathrm{d}t=\mathrm{d}u. \end{aligned}$$
(56)

The integral yields

$$\begin{aligned} I=e^{i\lambda } \int _0^{2\pi }\sin (u)|\sin (u)|^{a} e^{-iu} \mathrm{d}u. \end{aligned}$$
(57)

For better understanding, we can make the symmetric boundaries as well by transforming again \(u=w+\pi , w=u-\pi , \mathrm{d}u=\mathrm{d}w\),

$$\begin{aligned} I=e^{i\lambda } \int _{-\pi }^{\pi }\sin (w)|\sin (w)|^{a} e^{-iw} \mathrm{d}w. \end{aligned}$$
(58)

The last integral is simply

$$\begin{aligned}&I=-ie^{i\lambda } \int _{-\pi }^{\pi }\sin ^2 (w)|\sin (w)|^{a} \nonumber \\&\mathrm{d}w=-2ie^{i\lambda }\int _0^{\pi } |\sin (w)|^{a+2}\nonumber \\&\mathrm{d}w=-4ie^{i\lambda } W(a+2)\nonumber \\&W(x)=\int _0^{\frac{\pi }{2}} \cos ^x (\xi ) \mathrm{d}\xi \,{\hbox {or}}\, \nonumber \\&W(x)=\int _0^{\frac{\pi }{2}}\sin ^{x} (\xi )\mathrm{d}\xi , \end{aligned}$$
(59)

where W stands for the Wallis integral [51]. Thus, the averaged nonlinear term reads,

$$\begin{aligned} \langle f\rangle= & {} \frac{-1}{2\pi } |\varphi | \times (-4ie^{i\lambda } W (a+2))\nonumber \\= & {} \frac{i}{2}\varphi |\varphi |^a \times \left( \frac{4}{\pi }W(a+2)\right) =\frac{i\gamma }{2}\varphi |\varphi |^a\nonumber \\= & {} \frac{4}{\pi }W(a+2)=\frac{4}{\pi }\times \frac{\sqrt{\pi }}{2} \frac{\varGamma \left( \frac{(a+2)}{2}+1\right) }{\varGamma \left( \frac{a+2}{2}+1\right) }\nonumber \\= & {} \frac{2}{\pi }\frac{\frac{a+1}{2}}{\frac{a}{2}+1} \frac{\varGamma \left( \frac{a+1}{2}\right) }{\varGamma \left( \frac{a}{2}+1\right) }. \end{aligned}$$
(60)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yacobi, G., Kislovsky, V., Kovaleva, M. et al. Unidirectional energy transport in the symmetric system of non-linearly coupled oscillators and oscillatory chains. Nonlinear Dyn 98, 2687–2709 (2019). https://doi.org/10.1007/s11071-019-05230-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05230-z

Keywords

Navigation