Advertisement

Taxicab geometry in table of higher-order elements

  • Zdeněk Biolek
  • Dalibor BiolekEmail author
  • Viera Biolková
  • Zdeněk Kolka
Original paper
  • 26 Downloads

Abstract

The paper deals with the analysis of the order of the differential equation of motion describing the dynamics of a one-port network compounded of series or parallel connections of arbitrary elements from Chua’s table. It takes advantage of the fact that the elements in the table are arranged in a square graticule, which conforms to the so-called taxicab geometry. The order of the equation of motion is then expressed via the so-called Manhattan metric, which is applied to measuring the distance between individual elements in the table. It is demonstrated that the order can be taken as the radius of the so-called quarter-circle. The quarter-circle is a geometric figure in Chua’s table, circumscribed around an imaginary central point where the so-called hidden element of the one-port network is located.

Keywords

Higher-order elements Chua’s table Memristor Complexity Dimension Equation of motion Taxicab geometry Manhattan metric 

Notes

Acknowledgements

This work has been supported by the Czech Science Foundation under Grant No. 18-21608S. For research, the infrastructure of K217 Department, UD Brno, was also used.

Compliance with ethical standards

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    Coddington, E.A., Levinson, N.: The Poincaré–Bendixson Theory of Two-Dimensional Autonomous Systems. Theory of Ordinary Differential Equations, pp. 389–403. McGraw-Hill, New York (1955)Google Scholar
  2. 2.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)zbMATHGoogle Scholar
  3. 3.
    Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Abrams, D.M., Strogatz, H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93(17), 174102-1-4 (2004)Google Scholar
  6. 6.
    Johnson, N.F.: Simply Complexity: A Clear Guide to Complexity Theory. Oneworld Publications, London (2009)Google Scholar
  7. 7.
    McCabe, T.J., Butler, C.W.: Design complexity measurement and testing. Commun. ACM 32(12), 1415–1423 (1989)Google Scholar
  8. 8.
    Navlakha, J.K.: A survey of systems complexity metrics. Comput. J. 30(3), 233–238 (1987)Google Scholar
  9. 9.
    Rhodes, J.L.: Applications of Automata Theory and Algebra. World Scientific, Singapore (2010)Google Scholar
  10. 10.
    Kolmogorov, A.: On tables of random numbers. Sankhyā Indian J. Stat. Ser. A 25(4), 369–376 (1963)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Mezić, I., Fonoberov, V.A., Fonoberova, M., Sahai, T.: Spectral complexity of directed graphs and application to structural decomposition. Complexity 9610826, 18p (2019)Google Scholar
  12. 12.
    Gutman, I., Soldatović, T., Vidović, D.: The energy of a graph and its size dependence. A Monte Carlo approach. Chem. Phys. Lett 297(5–6), 428–432 (1998)Google Scholar
  13. 13.
    Stanowski, M.: Abstract complexity definition. Complicity 8(2), 78–83 (2011)Google Scholar
  14. 14.
    Mezić, I., Banaszuk, A.: Comparison of systems with complex behavior. Physica D 197(1–2), 101–133 (2004)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Guillemin, E.A.: Synthesis of Passive Networks, vol. 5. Wiley, New York (1957)Google Scholar
  16. 16.
    Bers, A.: The degrees of freedom in RLC networks. IRE Trans. Circuit Theory 6(1), 91–95 (1959)Google Scholar
  17. 17.
    Bryant, P.R.: The order of complexity of electrical networks. The Institution of Electrical Engineers, Monograph No. 335 E, pp. 174–188 (1959)Google Scholar
  18. 18.
    Bryant, P.R.: Problems in Electrical Network Theory. Ph.D. dissertation, Cambridge University (1959)Google Scholar
  19. 19.
    Milić, M.M.: General passive networks-solvability, degeneracies, and order of complexity. IEEE Trans. Circuits Syst. CAS–21(2), 177–183 (1974)MathSciNetGoogle Scholar
  20. 20.
    Purslow, E.J., Spence, R.: Order of complexity of active networks. Proc. IEE 114(2), 195–198 (1967)MathSciNetGoogle Scholar
  21. 21.
    Tow, J.: Order of complexity of linear active networks. Proc. IEE 115(9), 1259–1262 (1968)Google Scholar
  22. 22.
    Emre, E., Hüseyin, Ö.: On the order of complexity of active RLC networks. IEEE Trans. Circuit Theory 20(5), 615 (1973)Google Scholar
  23. 23.
    Ozawa, T.: Order of complexity of linear active networks and a common tree in the 2-graph method. Electron. Lett. 8(22), 542–543 (1972)MathSciNetGoogle Scholar
  24. 24.
    Svoboda, J.A.: The order of complexity of RLC-nullor networks. Circuits Syst. Signal Process. 2(1), 89–98 (1983)zbMATHGoogle Scholar
  25. 25.
    Chua, L.O.: Introduction to Nonlinear Network Theory. McGraw-Hill, New York (1969)Google Scholar
  26. 26.
    Matsumoto, T., Chua, L.O., Makono, A.: On the implications of capacitor-only cutsets and inductor-only loops in nonlinear networks. IEEE Trans. Circuits Syst. CAS–26(10), 828–845 (1979)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Bryant, P.R., Bers, A.: The degrees of freedom in RLC networks. IRE Trans. Circuit Theory CT–7, 173–174 (1960)Google Scholar
  28. 28.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory CT–18(5), 507–519 (1971)Google Scholar
  29. 29.
    Bao, B.C., Liu, Z., Leung, H.: Is memristor a dynamic element? Electron. Lett. 49(24), 1523–1525 (2013)Google Scholar
  30. 30.
    Riaza, R.: Comment: Is memristor a dynamic element? Electron. Lett. 50(19), 1342–1343 (2014)Google Scholar
  31. 31.
    Bao, B.C.: Reply: Comment on ‘Is memristor a dynamic element?’. Electron. Lett. 50(19), 1344–1345 (2014)Google Scholar
  32. 32.
    Muthuswamy, B., Banerjee, S.: Introduction to Nonlinear Circuits and Networks. Springer, New York (2019)Google Scholar
  33. 33.
    Chua, L.O.: Device modeling via basic nonlinear circuit elements. IEEE Trans. Circuits Syst. CAS–27(11), 1014–1044 (1980)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Chua, L.O.: How we predicted the memristor. Nat. Electron. 1, 322 (2018)Google Scholar
  35. 35.
    Itoh, M., Chua, L.: Chaotic oscillation via edge of chaos criteria. Int. J. Bifurc. Chaos 27(11), 1730035–79 (2017)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Bao, B., Ma, Z.: A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurc. Chaos 21(9), 2629–2645 (2011)zbMATHGoogle Scholar
  37. 37.
    Bao, H., Jiang, T., Chu, K., Chen, M., Xu, Q., Bao, B.: Memristor-based canonical Chua’s circuit: extreme multistability in voltage-current domain and its controllability in flux-charge domain. Complexity 5935637, 13p (2018)zbMATHGoogle Scholar
  38. 38.
    Kengne, J., Tabekoueng, Z.N., Tamba, V.K., Negou, A.N.: Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit. Chaos 25, 103126-1-10 (2015)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Wang, C., Zang, S., Wang, X., Yuan, F., Tu, H.H.C.: Memcapacitor model and its application in chaotic oscillator with memristor. Chaos 27, 103110-1-12 (2017)zbMATHGoogle Scholar
  40. 40.
    Yuan, F., Wang, C., Wang, X.: Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis. Chaos 27, 033103-1-15 (2017)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Rajagopal, K., Jafari, S., Karthikeyan, A., Srinivasan, A., Ayele, B.: Hyperchaotic memcapacitor oscillator with infinite equilibria and coexisting attractors. Circuits Syst. Signal Process. 37(9), 3702–3724 (2018)MathSciNetGoogle Scholar
  42. 42.
    Yuan, F., Li, Y., Wang, G., Dou, G., Chen, G.: Complex dynamics in a memcapacitor-based circuit. Entropy 21, 188–14p (2019)MathSciNetGoogle Scholar
  43. 43.
    Wang, G., Shi, C., Wang, X., Yuan, F.: Coexisting oscillation and extreme multistability for a memcapacitor-based circuit. Math. Probl. Eng. 6504969, 13p (2017)MathSciNetGoogle Scholar
  44. 44.
    Biolek, D., Biolek, Z., Biolková, V.: Memristors and other higher-order elements in generalized through-across domain. In: Proceedings of the 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo, pp. 604–607 (2016)Google Scholar
  45. 45.
    Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Autom. Control 47(10), 1648–1662 (2002)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Biolek, D., Biolek, Z., Biolkova, V., Kolka, Z.: Nonlinear inerter in the light of Chua’s table of higher-order electrical elements. Proc. APCCAS 2016, 617–620 (2016)Google Scholar
  47. 47.
    Zhang, X.-I., Gao, Q., Nie, J.: The mem-inerter: a new mechanical element with memory. Adv. Mech. Eng. 10(6), 1–13 (2018)Google Scholar
  48. 48.
    Wang, F.Z.: A triangular periodic table of elementary circuit elements. IEEE Trans. Circuits Syst. I 60(3), 616–623 (2013)MathSciNetGoogle Scholar
  49. 49.
    Chua, L.O.: The fourth element. Proc. IEEE 100(6), 1920–1927 (2012)Google Scholar
  50. 50.
    Krause, E.F.: Taxicab Geometry: An Adventure in Non-Euclidean Geometry, p. 96. Dover Books on Mathematics, New York (1986)Google Scholar
  51. 51.
    Itoh, M., Chua, L.O.: Parasitic effects on memristor dynamics. Int. J. Bifurc. Chaos 26(6), 1630014 (2016)zbMATHGoogle Scholar
  52. 52.
    Clapham, C., Nicholson, J.: The Concise Oxford Dictionary of Mathematics, p. 138. Oxford University Press, Oxford (2014)zbMATHGoogle Scholar
  53. 53.
    Biolek, Z., Biolek, D.: Euler–Lagrange equations of networks with higher-order elements. Radioengineering 26(2), 397–405 (2017)zbMATHGoogle Scholar
  54. 54.
    Biolek, D., Biolek, Z., Biolková, V.: Duality of complex systems built from higher-order elements. Complexity, 2018, Article ID 5719397 (2018)Google Scholar
  55. 55.
    Chua, L.O., Alexander, G.R.: The effects of parasitic reactances on nonlinear networks. IEEE Trans. Circuit Theory CT–18(5), 520–532 (1971)MathSciNetGoogle Scholar
  56. 56.
    Biolek, D., Biolek, Z.: Predictive models of nanodevices. IEEE Trans. Nanotechnol. 17(5), 906–913 (2018)zbMATHGoogle Scholar
  57. 57.
    Biolek, D., Biolek, Z., Biolková, V., Kolka, Z.: Synthesis of predictive models of nonlinear devices: the intuitive approach. In: Proceedings of ANNA 2018, Varna, Bulgaria, pp. 23–28 (2018)Google Scholar
  58. 58.
    Plesset, M.S.: The dynamics of cavitation bubbles. J. Appl. Mech. 16, 277–282 (1949)Google Scholar
  59. 59.
    Franc, J.-P., Michel, J.-M.: Fundamentals of Cavitation. Kluwer Academic Publishers, Berlin (2005)zbMATHGoogle Scholar
  60. 60.
    Bruton, L.T.: Frequency sensitivity using positive impedance converter-type networks. Proc. IEEE 56(8), 1378–1379 (1968)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and CommunicationBrno University of TechnologyBrnoCzech Republic
  2. 2.Faculty of Military TechnologiesUniversity of DefenceBrnoCzech Republic

Personalised recommendations