Skip to main content
Log in

Competition of spiral waves in heterogeneous CGLE systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The effects of spatial heterogeneity on a two-dimensional complex Ginzburg–Landau equation model are studied. In general, the interaction of a pair of spiral waves with a large degree of heterogeneity in two different media will cause three different patterns: (a) Multiple spiral waves coexist in different media; (b) the spiral wave is swept away in one medium and remains in another medium; (c) all of the spiral waves are suppressed by travelling waves having different frequencies. These travelling waves are generated from interface reported before. It is found that the interface is a wave source that can generate travelling waves with different frequencies in two submedia to compete with the original spiral waves in two different media. The competition results depend on the frequencies of the original spiral wave and the two travelling waves. Furthermore, local periodic pacing can replace the effect of the interface and reproduce the corresponding results, which gives additional evidence that the interface works as a wave source. The results give new ideas in pattern control such that we can suppress and annihilate spiral waves by generating a large degree of heterogeneity using selected parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Davidenko, J.M., Pertsov, A.M., Salomonsz, R., Baxter, W., Jalife, J.: Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355, 349–351 (1992)

    Article  Google Scholar 

  2. Winfree, A.T.: Evolving perspectives during 12 years of electrical turbulence. Chaos 8, 1–19 (1998)

    Article  Google Scholar 

  3. Garfinkel, A., Kim, Y.H., Voroshilovsky, O., Qu, Z., Kil, J.R., Lee, M.H., Karagueuzian, H.S., Weiss, J.N., Chen, P.S.: Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. USA 97, 6061–6066 (2000)

    Article  Google Scholar 

  4. Siegert, F., Weijer, C.J.: Analysis of optical density wave propagation and cell movement in the cellular slime mould Dictyostelium discoideum. Physica D 49, 224–232 (1991)

    Article  Google Scholar 

  5. Jakubith, S., Rotermund, H.H., Engel, W., Von, O.A., Ertl, G.: Spatio-temporal concentration patterns in a surface reaction: propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett. 65, 3013–3016 (1990)

    Article  Google Scholar 

  6. Winfree, A.T.: Spiral waves of chemical activity. Science 175, 634–636 (1972)

    Article  Google Scholar 

  7. Kim, D.T., Kwan, Y., Lee, J.J., Ikeda, T., Uchida, T., Kamjoo, K., Kim, Y.H., Ong, J.J., Athill, C.A., Wu, T.J.: Patterns of spiral tip motion in cardiac tissues. Chaos 8, 137–148 (1998)

    Article  Google Scholar 

  8. Jiang, M., Wang, X., Ouyang, Q., Zhang, H.: Spatiotemporal chaos control with a target wave in the complex Ginzburg–Landau equation system. Phys. Rev. E 69, 056202 (2004)

    Article  Google Scholar 

  9. Zhang, R., Yang, L., Zhabotinsky, A.M., Epstein, I.R.: Propagation and refraction of chemical waves generated by local periodic forcing in a reaction–diffusion model. Phys. Rev. E 76, 016201 (2007)

    Article  Google Scholar 

  10. Manor, R., Hagberg, A., Meron, E.: Wavenumber locking and pattern formation in spatially forced systems. New J. Phys. 11, 063016 (2009)

    Article  Google Scholar 

  11. Yuan, G., Liu, Y.P., Xu, A.G., Wang, G.R.: Dynamics of spiral waves driven by a dichotomous periodic signal. Nonlinear Dyn. 70, 1719–1730 (2012)

    Article  MathSciNet  Google Scholar 

  12. Zhang, H., Cao, Z., Wu, N.J., Ying, H.P., Hu, G.: Suppress Winfree turbulence by local forcing excitable systems. Phys. Rev. Lett. 94, 188301 (2005)

    Article  Google Scholar 

  13. Yuan, G.Y., Wang, G.R., Chen, S.G.: Control of spiral waves and spatiotemporal chaos by periodic perturbation near the boundary. Europhys. Lett. 72, 908–914 (2005)

    Article  Google Scholar 

  14. Tanaka, M., Hörning, M., Kitahata, H., Yoshikawa, K.: Elimination of a spiral wave pinned at an obstacle by a train of plane waves: effect of diffusion between obstacles and surrounding media. Chaos 25, 103127 (2015)

    Article  MathSciNet  Google Scholar 

  15. Sakaguchi, H., Fujimoto, T.: Elimination of spiral chaos by periodic force for the Aliev–Panfilov model. Phys. Rev. E 67, 067202 (2003)

    Article  Google Scholar 

  16. He, Y.F., Ai, B.Q., Hu, B.: Pattern formation controlled by time-delayed feedback in bistable media. Chem. Phys. 133, 114507 (2010)

    Google Scholar 

  17. Mikhailov, A.S., Showalter, K.: Control of waves, patterns and turbulence in chemical systems. Phys. Rep. 425, 79–194 (2006)

    Article  MathSciNet  Google Scholar 

  18. Xie, F., Weiss, J.N.: Interaction and breakup of inwardly rotating spiral waves in an inhomogeneous oscillatory medium. Phys. Rev. E 75, 016107 (2007)

    Article  Google Scholar 

  19. Cui, X., Huang, X., Cao, Z., Zhang, H., Hu, G.: Interface-selected waves and their influence on wave competition. Phys. Rev. E 78, 026202 (2008)

    Article  Google Scholar 

  20. Yuan, G.Y., Zhang, H., Xu, A.G., Wang, G.R.: Attractive and repulsive contributions of localized excitability inhomogeneities and elimination of spiral waves in excitable media. Phys. Rev. E 88, 022920 (2013)

    Article  Google Scholar 

  21. Hendrey, M., Nam, K., Guzdar, P., Ott, E.: Target waves in the complex Ginzburg–Landau equation. Phys. Rev. E 62, 7627–7631 (2000)

    Article  Google Scholar 

  22. Cui, X., Huang, X., Hu, G.: Waves spontaneously generated by heterogeneity in oscillatory media. Sci. Rep. 6, 25177 (2016)

    Article  Google Scholar 

  23. Li, B.W., Zhang, H., Ying, H.P., Chen, W.Q., Hu, G.: Sinklike spiral waves in oscillatory media with a disk-shaped inhomogeneity. Phys. Rev. E 77, 056207 (2008)

    Article  Google Scholar 

  24. Xu, L., Qu, Z., Di, Z.: Drifting dynamics of dense and sparse spiral waves in heterogeneous excitable media. Phys. Rev. E 79, 036212 (2009)

    Article  Google Scholar 

  25. Hendrey, M., Ott, E., Antonsen Jr., T.M.: Spiral wave dynamics in oscillatory inhomogeneous media. Phys. Rev. E 61, 4943–4953 (2000)

    Article  MathSciNet  Google Scholar 

  26. Zhan, M., Wang, X., Gong, X., Lai, C.H.: Phase synchronization of a pair of spiral waves. Phys. Rev. E 71, 036212 (2005)

    Article  Google Scholar 

  27. Huang, X., Cui, X., Liao, X., Hu, G.: Pattern control in oscillatory systems with invisible controllers. Europhys. Lett. 95, 24001 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Grant Nos. 11775020, 61573065 and 71731002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 206 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Cui, X. & Di, Z. Competition of spiral waves in heterogeneous CGLE systems. Nonlinear Dyn 98, 561–571 (2019). https://doi.org/10.1007/s11071-019-05212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05212-1

Keywords

Navigation