Advertisement

Complex dynamical behavior in memristor–capacitor systems

  • Lijuan Chen
  • Yuan Zhou
  • Fangyan YangEmail author
  • Shouming Zhong
  • Jianwei Zhang
Original paper
  • 78 Downloads

Abstract

The parallel and series circuits of a Hewlett–Packard memristor and a capacitor are foundational building blocks for realistic memristive circuits. Due to the nonlinearity of the memristor, traditional studies with a single sinusoidal stimulus are limited in their ability to reveal the complex characteristics of memristors. By converting the circuits to an autonomous dimensionless dynamical system, we show that both memristors and capacitors can generate complex dynamical behaviors such as high periodic limit cycles and chaos under a combined periodic stimulus of two sinusoidal signals. To verify the existence of chaos, we present a computer-assisted rigorous proof by a topological horseshoe as well as a circuit implementation. In this way, we uncover a new property of the memristor–capacitor systems: for a typical memristor, e.g., \(R_\mathrm{OFF}/R_\mathrm{ON}=100\), no matter what values other parameters take, there often exists a periodic stimulus to make the circuits chaotic. Furthermore, under combined excitation of multiple periodic stimulus, the chaos in the systems still exists irrespective of a certain pattern that the frequencies of these stimulus have.

Keywords

Chaos HP memristor Memristor–capacitor circuit Topological horseshoe 

Notes

Compliance with ethical standards

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, Complex Dynamical Behavior in Memristor–Capacitor Systems.

References

  1. 1.
    Chua, L.O.: Memristor-missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)Google Scholar
  2. 2.
    Strukov, D.B., Snider, G.S., Stewart, D.R., et al.: The missing memristor found. Nature 453(7191), 80–83 (2008)Google Scholar
  3. 3.
    Dongale, T.D., Patil, P.J., Desai, N.K., et al.: TiO\(_{2}\) based nanostructured memristor for RRAM and neuromorphic applications: a simulation approach. Nano Converg. 3(1), 16 (2016)Google Scholar
  4. 4.
    Zha, J., Huang, H., Huang, T., et al.: A general memristor model and its applications in programmable analog circuits. Neurocomputing 267(6), 134–140 (2017)Google Scholar
  5. 5.
    Mokhtar, S.M.A., Wan, F.H.A., Kadiran, K.A., et al.: Programmable delay element using memristor and case study in delay lock loop. In: Proceedings of IEEE Control and System Graduate Research Colloquium (ICSGRC), pp. 17–21 (2017)Google Scholar
  6. 6.
    Yang, C.J., Kim, H.: Memristor bridge synapse-based neural network circuit design and simulation of the hardware-implemented artificial neuron. J. Inst. Control Robot. Syst. 21(5), 477–481 (2015)Google Scholar
  7. 7.
    Gi, S., Yeo, I., Chu, M., et al.: Fundamental issues of implementing hardware neural networks using memristor. In: Proceedings of IEEE International SoC Design Conference (ISOCC), pp. 215–216 (2016)Google Scholar
  8. 8.
    Volos, C.K., Akgul, A., Pham, V.T., et al.: Antimonotonicity, crisis and multiple attractors in a simple memristive circuit. J. Circuits Syst. Comput. 27(02), 1850026 (2018)Google Scholar
  9. 9.
    Guo, Z., Si, G., Xu, X., et al.: Generalized modeling and character analyzing of composite fractional-order memristors in series connection. Nonlinear Dyn. 95(1), 101–115 (2019)Google Scholar
  10. 10.
    Prousalis, D.A., Volos, C.K., Stouboulos, I.N., et al.: Hyperchaotic memristive system with hidden attractors and its adaptive control scheme. Nonlinear Dyn. 90(3), 1681–1694 (2017)MathSciNetGoogle Scholar
  11. 11.
    Rajagopal, K., Akgul, A., Jafari, S., et al.: A chaotic memcapacitor oscillator with two unstable equilibriums and its fractional form with engineering applications. Nonlinear Dyn. 91(2), 957–974 (2018)Google Scholar
  12. 12.
    Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)MathSciNetGoogle Scholar
  13. 13.
    Mu, X., Yu, J., Wang, S.: Modeling the memristor with piecewise linear function. Int. J. Numer. Model. Electron. Netw. Devices Fields 28(1), 96–106 (2015)Google Scholar
  14. 14.
    Chen, M., Yu, J., Bao, B.C.: Finding hidden attractors in improved memristor-based Chua’s circuit. Electron. Lett. 51(6), 462–464 (2015)Google Scholar
  15. 15.
    Li, Q., Zeng, H., Li, J.: Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn. 79(4), 2295–2308 (2015)MathSciNetGoogle Scholar
  16. 16.
    Li, Q., Hu, S., Tang, S., et al.: Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. Int. J. Circuit Theory Appl. 42(11), 1172–1188 (2014)Google Scholar
  17. 17.
    Chen, Z., Tang, H., Wang, Z., et al.: Design and circuit implementation for a novel charge-controlled chaotic memristor system. J. Appl. Anal. Comput. 5(2), 251–261 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Wang, X., Yu, J., Jin, C., et al.: Chaotic oscillator based on memcapacitor and meminductor. Nonlinear Dyn. 96, 161 (2019)Google Scholar
  19. 19.
    Xu, B., Wang, G., Iu, H.H.C., et al.: A memristor–meminductor-based chaotic system with abundant dynamical behaviors. Nonlinear Dyn. 96, 765 (2019)Google Scholar
  20. 20.
    Bao, H., Hu, A., Liu, W., et al.: Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. Neural Netw. Learn. Syst, IEEE Trans (2019).  https://doi.org/10.1109/TNNLS.2019.2905137 Google Scholar
  21. 21.
    Buscarino, A., Fortuna, L., Frasca, M., et al.: A gallery of chaotic oscillators based on hp memristor. Int. J. Bifurc. Chaos 23(05), 1330015 (2013)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Ochs, K., Solan, E.: Wave digital emulation of charge- or flux-controlled memristors. In: Proceedings of IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 161–164 (2017)Google Scholar
  23. 23.
    Zhang, X., Jiang, W.: Construction of flux-controlled memristor and circuit simulation based on smooth cellular neural networks module. IET Circuits Devices Syst. 12(3), 263–270 (2017)Google Scholar
  24. 24.
    Yuan, F., Wang, G.Y., Wang, X.Y.: Dynamical characteristics of an HP memristor based on an equivalent circuit model in a chaotic oscillator. Chin. Phys. B 24(6), 207–215 (2015)Google Scholar
  25. 25.
    Budhathoki, R.K., Sah, M.P., Adhikari, S.P., et al.: Composite behavior of multiple memristor circuits. IEEE Trans. Circuits Syst. I 60(10), 2688–2700 (2013)MathSciNetGoogle Scholar
  26. 26.
    Galias, Z.: Numerical study of multiple attractors in the parallel inductor capacitor memristor circuit. Int. J. Bifurc. Chaos 27(11), 1730036 (2017)MathSciNetGoogle Scholar
  27. 27.
    Liu, H., Li, Z., Bu, K., et al.: Computation of the locus crossing point location of MC circuit. Chin. Phys. B 23(4), 682–685 (2014)Google Scholar
  28. 28.
    Ntinas, V., Vourkas, I., Sirakoulis, G.C.: LC filters with enhanced memristive damping. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 2664–2667 (2015)Google Scholar
  29. 29.
    Sozen, H., Cam, U.: First-order memristor–capacitor filter circuits employing HP memristor. J. Circuits Syst. Comput. 23(8), 1450116 (2014)Google Scholar
  30. 30.
    Bao, B.C., Wu, P., Bao, H., et al.: Chaotic bursting in memristive diode bridge-coupled Sallen-Key lowpass filter. Electron. Lett. 53(16), 1104–1105 (2017)Google Scholar
  31. 31.
    Liu, H.J., Li, Z.W., Bu, K., et al.: Computation of the locus crossing point location of MC circuit. Chin. Phys. B 23(4), 682–685 (2014)Google Scholar
  32. 32.
    Wan, J., Zheng, J., Zeng, J.: Properties of Wien bridge oscillator circuit with memristor emulator. Electron. World. 13(1), 41–42 (2016)Google Scholar
  33. 33.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)Google Scholar
  34. 34.
    Li, C., Belkin, D., Li, Y., et al.: Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nature Commun. 9(1), 2385 (2018)Google Scholar
  35. 35.
    Krestinskaya, O., Dolzhikova, I., James, A.P.: Hierarchical temporal memory using memristor networks: a survey. arXiv preprint arXiv:1805.02921 (2018)
  36. 36.
    Bao, B., Jiang, P., Wu, H., et al.: Complex transient dynamics in periodically forced memristive Chua’s circuit. Nonlinear Dyn. 79(4), 2333–2343 (2015)MathSciNetGoogle Scholar
  37. 37.
    Bao, B., Hu, A., Xu, Q., et al.: AC-induced coexisting asymmetric bursters in the improved Hindmarsh–Rose model. Nonlinear Dyn. 92(4), 1695–1706 (2018)Google Scholar
  38. 38.
    Xu, Q., Song, Z., Bao, H., et al.: Two-neuron-based non-autonomous memristive Hopfield neural network: numerical analyses and hardware experiments. AEU-Int. J. Electron. Commun. 96, 66–74 (2018)Google Scholar
  39. 39.
    Bao, H., Liu, W., Chen, M.: Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh–Nagumo circuit. Nonlinear Dyn. 96(3), 1879–1894 (2019)Google Scholar
  40. 40.
    Joglekar, Y.N., Wolf, S.J.: The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661–675 (2009)zbMATHGoogle Scholar
  41. 41.
    Biolek, Z., Biolek, D., Biolkova, V.: SPICE model of memristor with nonlinear dopant drift. Radio Eng. 18(2), 210–214 (2009)zbMATHGoogle Scholar
  42. 42.
    Li, Q.D., Guo, J.L.: Algorithm for calculating the Lyapunov exponents of switching system and its application. Acta Phys. Sin. 63(10), 100501 (2014)Google Scholar
  43. 43.
    Tang, S., Chen, L., Yang, F., et al.: Simple hyperchaotic memory system with large topological entropy. Nonlinear Anal.-Model. Control 22(2), 230–247 (2017)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Chen, L., Tang, S., Li, Q., et al.: A new 4D hyperchaotic system with high complexity. Math. Comput. Simul. 146, 44–56 (2018)MathSciNetGoogle Scholar
  45. 45.
    Leonov, G.A., Kuznetsov, N.V.: Time-varying linearization and the Perron effects. Int. J. Bifurc. Chaos 17(4), 1079–1107 (2007)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Yang, X.S.: Topological horseshoes and computer assisted verification of chaotic dynamics. Int. J. Bifurc. Chaos 19(04), 1127–1145 (2009)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. Comput. Phys. 4(4), 843 (1990)zbMATHGoogle Scholar
  48. 48.
    Li, Q.D., Yang, X.S.: A simple method for finding topological horseshoes. Int. J. Bifurc. Chaos 20(2), 467–478 (2010)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Li, Q.D., Yang, X.S., Chen, S.: Hyperchaos in a spacecraft power system. Int. J. Bifurc. Chaos 21(6), 1719–1726 (2011)zbMATHGoogle Scholar
  50. 50.
    Li, Q.D., Yang, X.S.: New walking dynamics in the simplest passive bipedal walking model. Appl. Math. Model. 36(11), 5262–5271 (2012)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Jia, H.Y., Chen, Z.Q., Qi, G.Y.: Chaotic characteristics analysis and circuit implementation for a fractional-order system. IEEE Trans. Circuits Syst. I Regul. Pap. 61(3), 845–853 (2017)Google Scholar
  52. 52.
    Li, Q.D., Tang, S.: Algorithm for finding horseshoes in three-dimensional hyperchaotic maps and its application. Acta Phys. Sin. 62(2), 020510 (2013)MathSciNetGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Technical Aspects of Multimodal Systems Group (TAMS), Department of InformaticsUniversity of HamburgHamburgGermany
  3. 3.Chongqing Key Laboratory of Complex Systems and Bionic ControlChongqing University of Posts and TelecommunicationsChongqingChina
  4. 4.School of Optical Electrical and Computer EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations