Skip to main content
Log in

Dynamic property analysis and circuit implementation of simplified memristive Hodgkin–Huxley neuron model

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the dynamic properties of a simplified memristive Hodgkin–Huxley (SMHH) neuron model are analyzed and an electric circuit is designed to completely implement it based on the mathematical equation. The sodium ion channel and potassium ion channel in the SMHH neuron model can be regarded as a second-order memristor and a first-order memristor, respectively. Under different stimuli, the SMHH neuron model can present spiking or bursting activities. In particular, when a periodic sinusoidal current is imposed on the neuron, the electrical activity behaves as bursting and it has a close frequency dependence on the external forcing current. The initiation current value of bursting activity first increases and then drops with the increase in stimulus frequency of the periodic sinusoidal current, which shows an inconsistency in traditional neural adaptation. The potential mechanism is that the frequency-dependent property of the ion channel memristors affects the threshold dynamics of the SMHH neuron. Furthermore, an analog circuit is designed to completely implement the SMHH neuron model. Since the conductance-based neuron models are mathematical complexity, only few analog circuits are designed for this kind of neuron models, which indicates that the designed circuit unit in this work will provide a great convenience to study the dynamics of conductance-based neuron and even collective behaviors of neural networks at circuit level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Demerens, C., Stankoff, B., Logak, M., et al.: Induction of myelination in the central nervous system by electrical activity. Proc. Natl. Acad. Sci. USA 93, 9887–9892 (1996)

    Article  Google Scholar 

  2. Pedarzani, P., Mosbacher, J., Rivard, A., et al.: Control of electrical activity in central neurons by modulating the gating of small conductance Ca activated K channels. J. Biol. Chem. 276, 9762–9769 (2001)

    Article  Google Scholar 

  3. Landowne, D., Scruggs, V.: Effects of internal and external sodium on the sodium current–voltage relationship in the squid giant axon. J. Membr. Biol. 59, 79–89 (1981)

    Article  Google Scholar 

  4. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  5. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117, 500–544 (1952)

    Article  Google Scholar 

  6. Hindmarsh, J.L., Rose, R.M.: A model of neural bursting using three couple first order differential equations. Proc. R. Soc. Lond. B Biol. Sci. 221, 87–102 (1984)

    Article  Google Scholar 

  7. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature 296, 162–164 (1982)

    Article  Google Scholar 

  8. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)

    Article  Google Scholar 

  9. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Article  Google Scholar 

  10. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Article  Google Scholar 

  11. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. Ire 50, 2061–2070 (1962)

    Article  Google Scholar 

  12. Nagumo, J., Sato, S.: On a response characteristic of a mathematical neuron model. Kybernetik 10, 155–164 (1972)

    Article  MATH  Google Scholar 

  13. Wang, H., Lu, Q., Wang, Q.: Bursting and synchronization transition in the coupled modified ML neurons. Commun. Nonlinear Sci. Numer. Simul. 13, 1668–1675 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, H., Wang, L., Yu, L., et al.: Response of Morris–Lecar neurons to various stimuli. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 83, 021915 (2011)

    Article  Google Scholar 

  15. Wang, H., Sun, Y., Li, Y., et al.: Influence of autapse on mode-locking structure of a Hodgkin–Huxley neuron under sinusoidal stimulus. J. Theor. Biol. 358, 25–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Upadhyay, R.K., Mondal, A.: Synchronization of bursting neurons with a slowly varying dc current. Chaos. Solitons Fractals 99, 195–208 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lindner, B.: Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004)

    Article  Google Scholar 

  18. Wang, Y., Ma, J., Xu, Y., et al.: The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurc. Chaos 27, 1750030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, C., Wang, J., Yu, H., et al.: Impact of delays on the synchronization transitions of modular neuronal networks with hybrid synapses. Chaos 23, 033121 (2013)

    Article  Google Scholar 

  20. Wang, Q., Duan, Z., Perc, M., et al.: Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability. EPL (Eur. Lett.) 83, 50008 (2008)

    Article  Google Scholar 

  21. Wang, Q., Perc, M., Duan, Z., et al.: Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 80, 026206 (2009)

    Article  Google Scholar 

  22. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  23. Lv, M., Wang, C., Ren, G., et al.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  24. Ma, J., Wang, Y., Wang, C., et al.: Mode selection in electrical activities of myocardial cell exposed to electromagnetic radiation. Chaos Solitons Fractals 99, 219–225 (2017)

    Article  Google Scholar 

  25. Wu, F., Wang, C., Xu, Y., et al.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6, 28 (2016)

    Article  Google Scholar 

  26. Ma, J., Huang, L., Xie, Z., et al.: Simulated test of electric activity of neurons by using Josephson junction based on synchronization scheme. Commun. Nonlinear Sci. Numer. Simul. 17, 2659–2669 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, F., Liu, Q., Guo, H., et al.: Simulating the electric activity of FitzHugh–Nagumo neuron by using Josephson junction model. Nonlinear Dyn. 69, 2169–2179 (2012)

    Article  MathSciNet  Google Scholar 

  28. Dana, S.K., Sengupta, D.C., Hu, C.K.: Spiking and bursting in Josephson Junction. IEEE Trans. Circuits Syst. II Express Briefs 53, 1031–1034 (2006)

    Article  Google Scholar 

  29. Nouri, M., Karimi, G.R., Ahmadi, A., et al.: Digital multiplierless implementation of the biological FitzHugh–Nagumo model. Neurocomputing 165, 468–476 (2015)

    Article  Google Scholar 

  30. Cosp, J., Binczak, S., Madrenas, J., et al.: Realistic model of compact VLSI FitzHugh–Nagumo oscillators. Int. J. Electron. 101, 220–230 (2014)

    Article  Google Scholar 

  31. Behdad, R., Binczak, S., Dmitrichev, A.S., et al.: Artificial electrical Morris-Lecar neuron. IEEE Trans. Neural Netw. Learn. Syst. 26, 1875 (2015)

    Article  MathSciNet  Google Scholar 

  32. Wagemakers, A., Sanjuán, M.A.F., Casado, J.M., et al.: Building electronic bursters with the Morris–Lecar neuron model. Int. J. Bifurc. Chaos 16, 3617–3630 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hu, X., Liu, C., Liu, L., et al.: An electronic implementation for Morris–Lecar neuron model. Nonlinear Dyn. 84, 2317–2332 (2016)

    Article  MathSciNet  Google Scholar 

  34. Golomb, D., Guckenheimer, J., Gueron, S.: Reduction of a Channel-Based Model for a Stomatogastric Ganglion LP Neuron. Springer, New York (1993)

    Book  MATH  Google Scholar 

  35. Kepler, T.B., Abbott, L.F., Marder, E.: Reduction of conductance-based neuron models. Biol. Cybern. 66, 381–387 (1992)

    Article  MATH  Google Scholar 

  36. Wainrib, G., Thieullen, M., Pakdaman, K.: Reduction of stochastic conductance-based neuron models with time-scales separation. J. Comput. Neurosci. 32, 327–346 (2012)

    Article  MathSciNet  Google Scholar 

  37. Hegab, A.M., Salem, N.M., Radwan, A.G., et al.: Neuron model with simplified memristive ionic channels. Int. J. Bifurc. Chaos 25, 1530017 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chua, L., Sbitnev, V., Kim, H.: Hodgkin–Huxley axon is made of memristors. Int. J. Bifurc. Chaos 22, 1230011 (2012)

    Article  MATH  Google Scholar 

  39. Adhikari, S.P., Sah, M.P., Kim, H., et al.: Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 60, 3008–3021 (2013)

    Article  Google Scholar 

  40. Izhikevich, E.M.: Neural excitablity, spiking and brusting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Bhatia, N.N., Bergman, A.: Phase-locking and chaos in a silent Hodgkin–Huxley neuron exposed to sinusoidal electric field. Chaos Solitons Fractals 39, 454–462 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Fundamental Research Funds for the Central Universities (Grand No. 31020180308) and the National Nature Science Foundation of China (Grant No. 51877162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Liu, C. Dynamic property analysis and circuit implementation of simplified memristive Hodgkin–Huxley neuron model. Nonlinear Dyn 97, 1721–1733 (2019). https://doi.org/10.1007/s11071-019-05100-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05100-8

Keywords

Navigation