Skip to main content
Log in

Nonlinear multi-element interactions in an elastically coupled microcantilever array subject to electrodynamic excitation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we formulate and investigate a nonlinear initial boundary-value problem for an array of N elastically coupled hybrid microcantilever beams that are subject to electrodynamic excitation. The equations of motion for the individual viscoelastic element consist of two fields: the base component which is common to all cantilevers and the unrestrained component which is excited electrodynamically. The coupling of the elements is obtained via an equivalent linear stiffness that is estimated from experimental measurements of a 5-element array. We employ a Galerkin ansatz to obtain a modal dynamical system that consistently incorporates a quintic nonlinearity due to the combined effects of cubic viscoelasticity and quadratic electrodynamics. We validate the periodic response of a 5-element array with moderate damping and construct numerically a comprehensive bifurcation structure for a 25-element array. The analysis reveals an intricate structure for small damping that includes both quasiperiodic and nonstationary chaotic-like energy transfer between the elements of the array. It is noteworthy that an array with a larger coupling stiffness, corresponding to a smaller distance between adjacent elements, yields a chaotic bifurcation structure for a larger value of viscoelastic damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  1. Baguet, S., Nguyen, V.N., Grenat, C., Lamarque, C.H., Dufour, R.: Nonlinear dynamics of micromechanical resonator arrays for mass sensing. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4624-0

    Article  Google Scholar 

  2. Boisen, A., Thundat, T.: Design and fabrication of cantilever array biosensors. Mater. Today 12(9), 32–38 (2009)

    Article  Google Scholar 

  3. Buks, E., Roukes, M.L.: Electrically tunable collective response in a coupled micromechanical array. J. Microelectromech. Syst. 11(6), 802–807 (2002)

    Article  Google Scholar 

  4. DeMartini, E.B., Rhoads, F.J., Zielke, A.M., Owen, G.K., Shaw, W.S., Turner, L.K.: A single input-single output coupled microresonator array for the detection and identification of multiple analytes. Appl. Phys. Lett. 93, 054102 (2008)

    Article  Google Scholar 

  5. Dick, J.A., Balachandran, B., Mote, D.C.: Localization in microresonator arrays: influence of natural frequency tuning. J. Comput. Nonlinear Dyn. 5(1), 011002 (2009)

    Article  Google Scholar 

  6. Dick, N., Grutzik, S., Wallin, C.B., Ilic, B.R., Krylov, S.: Actuation of higher harmonics in large arrays of micromechanical cantilevers for expanded resonant peak separation. J. Vib. Acoust. 140, 051013-1 (2018)

    Article  Google Scholar 

  7. Endo, D., Yabuno, H., Higashino, K., Yamamoto, Y., Matsumoto, S.: Self-excited coupled-microcantilevers for mass sensing. Appl. Phys. Lett. 106, 223105 (2015)

    Article  Google Scholar 

  8. Fasching, J.R., Tao, Y., Prinz, F.B.: Cantilever tip probe arrays for simultaneous SECM and AFM analysis. Sens. Actuators B 108, 964–972 (2005)

    Article  Google Scholar 

  9. Gil-Santos, E., Ramos, D., Pini, V., Calleja, M., Tamayo, J.: Exponential tuning of the coupling constant of coupled microcantilevers by modifying their separation. Appl. Phys. Lett. 98, 123108 (2011)

    Article  Google Scholar 

  10. Gutschmidt, S., Gottlieb, O.: Internal resonances and bifurcations of an array below the first pull-in instability. Int. J. Bifurc. Chaos 20(3), 605–618 (2010)

    Article  Google Scholar 

  11. Gutschmidt, S., Gottlieb, O.: Bifurcations and loss of orbital stability in nonlinear viscoelastic beam arrays subject to parametric actuation. J. Sound Vib. 329(18), 3835–3855 (2010)

    Article  Google Scholar 

  12. Gutschmidt, S., Gottlieb, O.: Nonlinear dynamic behavior of a microbeam array subject to parametric actuation at low, medium and large DC-voltages. Nonlinear Dyn. 67(1), 1–36 (2012)

    Article  Google Scholar 

  13. Hacker, E., Gottlieb, O.: Internal resonance based sensing in noncontact atomic force microscopy. Appl. Phys. Lett. 101(5), 053106 (2012)

    Article  Google Scholar 

  14. Hikihara, T., Okamoto, Y., Ueda, Y.: An experimental spatio-temporal state transition of coupled magneto-elastic system. Chaos 7(4), 810–816 (1997)

    Article  Google Scholar 

  15. Hollander, E., Gottlieb, O.: Self-excited chaotic dynamics of a nonlinear thermo-visco-elastic system that is subject to laser irradiation. Appl. Phys. Lett. 101, 133507 (2012)

    Article  Google Scholar 

  16. Isacsson, A., Kinaret, J.M.: Parametric resonances in electrostatically interacting carbon nanotube arrays. Phys. Rev. B 79, 165418 (2009)

    Article  Google Scholar 

  17. Jackson, S., Gutschmidt, S.: Identification and analysis of artifacts in amplitude modulated atomic force microscopy array operation. J. Comput. Nonlinear Dyn. 12(5), 051018 (2017)

    Article  Google Scholar 

  18. Jackson, S., Gutschmidt, S., Roeser, D., Sattel, T.: Development of a mathematical model and analytical solution of a coupled two-beam array with nonlinear tip forces for application to AFM. Nonlinear Dyn. 87, 775–787 (2017)

    Article  Google Scholar 

  19. Jackson, S., Gutschmidt, S.: Utilization of a two-beam cantilever array for enhanced atomic force microscopy sensitivity. J. Vib. Acoust. 140, 041004-1 (2018)

    Article  Google Scholar 

  20. Kambali, P.N., Swain, G., Pandey, A.K., Buks, E., Gottlieb, O.: Coupling and tuning of modal frequencies in direct current biased microelectromechanical system arrays. Appl. Phys. Lett. 107, 063104 (2015)

    Article  Google Scholar 

  21. Karabalin, R.B., Cross, M.C., Roukes, M.L.: Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Phys. Rev. B 79(16), 165309 (2009)

    Article  Google Scholar 

  22. Kimura, M., Hikihara, T.: Capture and release of travelling intrinsic localized mode in coupled cantilever array. Chaos 19, 013138 (2009)

    Article  Google Scholar 

  23. Krylov, S., Lulinsky, S., Ilic Robert, B., Schneider, I.: Collective dynamics and pattern switching in an array of parametrically excited micro cantilevers interacting through fringing electrostatic fields. Appl. Phys. Lett. 105, 071909 (2014)

    Article  Google Scholar 

  24. Lifshitz, R., Cross, M.C.: Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays. Phys. Rev. B 67, 134302-1-12 (2003)

    Article  Google Scholar 

  25. Minne, S.C., Yaralioglu, G., Manalis, S.R., Adams, J.D., Zesch, J., Atalar, A., Quate, C.F.: Automated parallel high-speed atomic force microscopy. Appl. Phys. Lett. 72(18), 2340–2342 (1998)

    Article  Google Scholar 

  26. Minne, S.C., Manalis, S.R., Quate, C.F.: Bringing Scanning Probe Microscopy up to Speed. Kluwer, London (1999)

    Book  Google Scholar 

  27. Nayfeh, A., Pai, P.: Linear and Nonlinear Structural Mechanics. Wiley Publication, New York (2004)

    Book  Google Scholar 

  28. Perkins, E., Kimura, M., Hikihara, T., Balachandran, B.: Effects of noise on symmetric intrinsic localized modes. Nonlinear Dyn. 85, 333–341 (2016)

    Article  MathSciNet  Google Scholar 

  29. Qalandar, R.K., Strachan, B.S., Gibson, B., Sharma, M., Ma, A., Shaw, W.S., Turner, L.K.: Frequency division using a micromechanical resonance cascade. Appl. Phys. Lett. 105, 244103 (2014)

    Article  Google Scholar 

  30. Ramakrishna, S., Balachandran, B.: Energy localization and white noise-induced enhancement of response in a micro-scale oscillator array. Nonlinear Dyn. 62, 1–16 (2010)

    Article  Google Scholar 

  31. Rangelow, I.W., Ivanov, Tzv, Ivanova, K., Volland, B.E., Grabiec, P., Sarov, Y., Persaud, A., Gotszalk, T., Zawierucha, P., Zielony, M., Dontzov, D., Schmidt, B., Zier, M., Nikolov, N., Kostic, I., Engl, W., Sulzbach, T., Mielczarski, J., Kolb, S., Latimier, Du, P., Pedreau, R., Djakov, V., Huq, S.E., Edinger, K., Fortagne, O., Almansa, A., Blom, H.O.: Piezoresistive and self-actuated 128-cantilever arrays for nanotechnology applications. Microelectron. Eng. 84, 1260–1264 (2007)

    Article  Google Scholar 

  32. Shabana, A.A.: Theory of Vibration, vol. 2. Springer, New York (1991)

    Book  Google Scholar 

  33. Suzuki, N., Tanigawa, H., Suzuki, K.: Higher-order vibrational mode frequency tuning utilizing fishbone-shaped microelectromechanical systems resonator. J. Micromech. Microeng. 23, 045018 (2013)

    Article  Google Scholar 

  34. Torres, F., Uranga, A., Riverola, M., Sobreviela, G., Barniol, N.: Enhancement of frequency stability using synchronization of a cantilever array for mems-based sensors. Sensors 16, 1690 (2016)

    Article  Google Scholar 

  35. Vidal-Alvarez, G., Agusti, J., Torres, F., Abadal, G., Barniol, N., Llobet, J., Sansa, M., Fernández-Regúlez, M., Pérez-Murano, F., San, Paulo Á., Gottlieb, O.: Top-down silicon microcantilever with coupled bottom-up silicon nanowire for enhanced mass resolution. Nanotechnology 26, 145502 (2015)

    Article  Google Scholar 

  36. Villarroya, M., Verd, J., Teva, J., Abadal, G., Forsen, E., Murano, F.P., Uranga, A., Figueras, E., Montserrat, J., Esteve, J., Boisen, A., Barniol, N.: System on chip mass sensor based on polysilicon cantilevers arrays for multiple detection. Sens. Actuators A 132, 154–164 (2006)

    Article  Google Scholar 

  37. Wang, F., Bajaj, A.: Nonlinear dynamics of a three-beam structure with attached mass and three-mode interactions. Nonlinear Dyn. 62(1–2), 461–484 (2010)

    Article  MathSciNet  Google Scholar 

  38. Yie, Z., Miller, J.N., Shaw, W.S., Turner, L.K.: Parametric amplification in a resonant sensing array. J. Micromech. Microeng. 22, 035004 (2012)

    Article  Google Scholar 

  39. Zaitsev, S., Shtempluck, O., Buks, E., Gottlieb, O.: Nonlinear damping in a micromechanical oscillator. Nonlinear Dyn. 67, 859–883 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Technion Russell Berrie Nanotechnology Institute and the Israel Science Foundation (136/16) and the Spanish Ministry of Economy Project TEC2015-66337-R. PNK thanks the Technion and the Israel-Council for Higher Education for their support of his postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Gottlieb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Nonlinear damping of a single field cantilever

Following [27], the equations of motion for a beam can be written as

$$\begin{aligned}&(F_{1}\cos \varTheta _{3})_{x}-(F_{2}\sin \varTheta _{3})_{x}=m{U}_{tt} \end{aligned}$$
(7.1)
$$\begin{aligned}&(F_{1}\sin \varTheta _{3})_{x}+(F_{2}\cos \varTheta _{3})_{x}=m{W}_{tt} \end{aligned}$$
(7.2)

Neglecting rotary inertia (\(j_{3}=0\)) the equilibrium of moments with respect to y direction for a beam [27] are given by

$$\begin{aligned} M_{3x}\hbox {d}s+ & {} F_{2}\hbox {d}x(1+e)=0,\,\,\mathrm{{or}}\,\,F_{2}=-\frac{M_{3x}}{1+e} \end{aligned}$$
(7.3)

where \(F_{1}\), \(F_{2}\) are the resultant stresses, \(M_{3}\) is the moment, \(\varTheta _{3}\) is the rotational angle, and e is axial strain for the displacements U and W. The axial strain e is defined as a function of the displacements U and W [27] as

$$\begin{aligned} e= & {} \sqrt{(1+U_{x})^2+W_{x}^2}-1 \end{aligned}$$
(7.4)

and the bending curvature \(\rho _{3}\) is defined as a function of rotational angle \(\varTheta _{3}\) as

$$\begin{aligned} \rho _{3}= & {} \varTheta _{3x} \end{aligned}$$
(7.5)

where the displacements U and W are related to rotational angle \(\varTheta _{3}\) as [27]

$$\begin{aligned} \cos \varTheta _{3}=\frac{1+U_{x}}{1+e}\qquad \mathrm{{and}} \qquad \sin \varTheta _{3}=\frac{W_{x}}{1+e} \end{aligned}$$
(7.6)

The viscoelastic constitutive law incorporating a Voigt–Kelvin strain-rate-dependent damping is

$$\begin{aligned} \sigma _{11}=E\epsilon _{11}+D\epsilon _{11t} \end{aligned}$$
(7.7)

where

$$\begin{aligned} \epsilon _{11}= & {} -\frac{\partial U}{\partial x}. i_{1}=e-y\rho _{3} \\ \epsilon _{11t}= & {} \frac{(1+U_{x})U_{xt}+W_{x}W_{xt}}{1+e}-y\rho _{3t}\\ \epsilon _{12}= & {} \epsilon _{22}=\epsilon _{33}=\epsilon _{13}=\epsilon _{23}=0 \end{aligned}$$

Considering isotropic materials for the beam, assuming that the reference line coincides with the centroidal line and using Eq. (7.7), the moment equation can be written as

$$\begin{aligned} M_{3}= & {} -\int _{A}\sigma _{11}y\hbox {d}A=\int _{A}E(-ye+y^2\rho _{3})\hbox {d}A\nonumber \\&+\int _{A}D\Bigg (-\frac{(1+U_{x})U_{xt}+W_{x}W_{xt}}{1+e}y+y^2{\rho }_{3t}\Bigg )\hbox {d}A\nonumber \\ \end{aligned}$$
(7.8)

Assuming that the beam is inextensible (\(e=0\)) Eq. (7.8) becomes

$$\begin{aligned} M_{3}=EI\rho _{3}+DI{\rho _{3t}} \end{aligned}$$
(7.9)

For inextensible condition of the beam (\(e=0\)), Eqs. (7.4) and (7.6) are rewritten as

$$\begin{aligned} U_{x}= & {} \sqrt{1-W_{x}^{2}}-1 \end{aligned}$$
(7.10)
$$\begin{aligned} \cos \varTheta _{3}= & {} 1+U_{x}=\sqrt{1-W_{x}^2},\,\mathrm{{and}}\,\sin \varTheta _{3}=W_{x}\nonumber \\ \end{aligned}$$
(7.11)

Integrating Eq. (7.10) once with respect to x and using the boundary conditions \(U=0\) at \(x=0\), we obtain

$$\begin{aligned} U=\int _{0}^{x}[\sqrt{1-W_{x}^{2}}-1]\hbox {d}x \end{aligned}$$
(7.12)

Integrating Eq. (7.1) once with respect to x and using the boundary condition \(F_{x}=0\) at \(x=L\), yields

$$\begin{aligned}&F_{1}\cos \varTheta _{3}-F_{2}\sin \varTheta _{3}=\int _{L}^{s}mU_{tt}\hbox {d}s \nonumber \\&\mathrm{{or}} \nonumber \\&F_{1}=\frac{1}{\cos \varTheta _{3}}\Bigg [\int _{L}^{s}mU_{tt}\hbox {d}s+F_{2}\sin \varTheta _{3}\Bigg ] \end{aligned}$$
(7.13)

Differentiating Eq. (7.12) twice with respect to t and interchanging the order of integration and differentiation, we obtain

$$\begin{aligned} U_{tt}=\int _{0}^{x}\frac{\partial ^2}{\partial t^2}\sqrt{1-W_{x}^{2}}\hbox {d}s \end{aligned}$$

Hence,

$$\begin{aligned} \int _{L}^{x}mU_{tt}\hbox {d}x=\int _{L}^{x}m\int _{0}^{x}\frac{\partial ^2}{\partial t^2}\sqrt{1-W_{x}^{2}}\hbox {d}x \hbox {d}x \end{aligned}$$
(7.14)

Substituting Eqs. (7.11) and (7.14) into Eq. (7.13) yields

$$\begin{aligned} F_{1}= & {} \frac{1}{\sqrt{1-W_{x}^{2}}}\Bigg [\int _{L}^{x} m \int _{0}^{x}\frac{\partial ^2}{\partial t^2}\sqrt{1-W_{x}^2}\hbox {d}x \hbox {d}x \nonumber \\&+F_{2}W_{x}\Bigg ] \end{aligned}$$
(7.15)

The bending curvature \(\rho _{3}\) and the rotational angle \(\varTheta _{3}\) are related using Eqs. (7.5) and (7.11) as

$$\begin{aligned} \rho _{3}=\varTheta _{3x}=(\sin ^{-1}W_{x})_{x} \end{aligned}$$
(7.16)

Substituting Eq. (7.16) into Eq. (7.9) yields

$$\begin{aligned} M_{3}= & {} EI\rho _{3}+DI\rho _{3t}=EI(\sin ^{-1}W_{x})_{x}\nonumber \\&\qquad \qquad \qquad \qquad +DI(\sin ^{-1}W_{x})_{xt} \end{aligned}$$
(7.17)

Substituting \(M_{3}\) from Eq. (7.17) into Eq. (7.3) with \(e=0\) yields

$$\begin{aligned} F_{2}=-\Big [EI(\sin ^{-1}W_{x})_{x}+DI(\sin ^{-1}W_{x})_{xt}\Big ]_{x} \end{aligned}$$
(7.18)

Substituting Eqs. (7.15) and (7.18) into Eq. (7.2) and using Eq. (7.11), yields equation of motion

$$\begin{aligned}&\Bigg [\frac{W_{x}}{\sqrt{1-W_{x}^2}}\int _{L}^{x}m\int _{0}^{x}\frac{\partial ^2}{\partial t^2}\sqrt{1-W_{x}^2}\hbox {d}x \hbox {d}x\Bigg ]_{x}\nonumber \\&\quad -\Bigg [\frac{[EI(\sin ^{-1}W_{x})_{x}]_{x}}{\sqrt{1-W_{x}^2}}\Bigg ]_{x}{-}\Bigg [\frac{[DI(\sin ^{-1}W_{x})_{xt}]_{x}}{\sqrt{1-W_{x}^2}}\Bigg ]_{x}\nonumber \\&\quad +\,q_{2}=mW_{tt} \end{aligned}$$
(7.19)

Expanding the terms in Eq. (7.19) for small W upto cubic terms yields

$$\begin{aligned}&\rho AW_{tt}+DI\Bigg (W_{xxxt}+W_{xt}W_{xx}^2+W_{xxxt}W_{x}^2\Bigg )_{x}\nonumber \\&\quad +EI\Bigg (W_{xxx}+W_{x}\big ({{W}_{x}}W_{xx}\big )_{x}\Bigg )_{x}\nonumber \\&\quad +\frac{1}{2}\rho A\Bigg [W_{x}\int _{L}^{x}\Bigg (\int _{0}^{x}W_{x}^2\hbox {d}x\Bigg )_{tt}\hbox {d}x\Bigg ]_{x}=Q_{V}\nonumber \\ \end{aligned}$$
(7.20)

where W, \(\rho A\), and EI are the beam transverse displacements, longitudinal mass density, and bending stiffness, respectively. For rectangular cross section, the area is \(A=HB\) and the bending moment of inertia is \(I=BH^3/12\), where B and H are the beam width and thickness as shown in Fig. 1. D is internal material damping based on a Voigt–Kelvin model [13], respectively. The electrodynamic excitation \(Q_{V}\) is given by

$$\begin{aligned} Q_{V}={\frac{\epsilon _{0}B}{2}} {{V}_{f}}^2 \left[ \frac{1}{\big (d-W\big )^2}\right] \end{aligned}$$
(7.21)

where \({V}_{f}=V_\mathrm{dc}+V_\mathrm{ac}\cos (\varOmega t)\), d is distance between beam and bottom substrate \(\epsilon _{0}=8.854\times 10^{-12}\) is permitivity of free space. The corresponding boundary conditions of a microbeam are as follows

$$\begin{aligned} W(0,t){=}W_{x}(0,t){=}0,\,\, W_{xx}(L,t){=}W_{xxx}(L,t)=0 \nonumber \\ \end{aligned}$$
(7.22)

We nondimensionalize the governing equations with the variables \(w={W}/{d}\), \(s={x}/{L}\) and \(\tau ={t}/{T_{s}}\) where \(T_{s}^2=({\rho AL^4}/{EI})^2\) and \(\omega _{s}=1/T_{s}\). The non-dimensionalized equations of motion are given by

$$\begin{aligned}&w_{\tau \tau }{+}w_{ssss}{+}\mu \Big [w_{sss\tau }{+}\delta (w_{s\tau }w_{ss}^2+w_{sss\tau }w_{s}^2)\Big ]_{s}+\nonumber \\&\quad +\,\delta \Big [w_{s}({{w}_{s}}w_{ss})_{s}\Big ]_{s} {+}\delta \frac{1}{2}\Big [w_{s}\int _{1}^{s}\Big ( \int _{\alpha }^{s}{w^{2}_{s}\hbox {d}s}\Big )_{\tau \tau }\hbox {d}s\Big ]_{s}\nonumber \\&\quad =\, \Big [\frac{(\gamma +\eta \cos (\varOmega _\mathrm{ac}\tau )^2}{\big (1-w\big )^2}\Big ]\qquad \qquad \end{aligned}$$
(7.23)

The nondimensionalize boundary conditions are as follows

$$\begin{aligned} w(0,\tau )=w_{s}(0,\tau )=0,\,w_{ss}(1,\tau ){=}w_{sss}(1,\tau )=0\nonumber \\ \end{aligned}$$
(7.24)

The equivalent non-dimensionalized parameters in Eq. (7.23) are

$$\begin{aligned} \mu= & {} \frac{D\omega _{s}}{E}, \,\delta =\Big (\frac{d}{L}\Big )^2, \, \gamma =\sqrt{\frac{6\epsilon _{0}H}{Ed^3}}\Big (\frac{L}{H}\Big )^2V_\mathrm{dc}, \nonumber \\ \eta= & {} \sqrt{\frac{6\epsilon _{0}H}{Ed^3}}\Big (\frac{L}{H}\Big )^2V_\mathrm{ac},\, \varOmega =\frac{\varOmega _\mathrm{ac}}{\omega _{s}}. \end{aligned}$$
(7.25)

We premultiply Eq. (7.23) by denominator term and derive the modal dynamic equations by applying Galerkin’s method. We substitute the assumed solutions as \(w(s,\tau ) = q(\tau )\phi (s)\) into Eq. (7.23), and applying Galerkin’s method, we obtain ordinary differential equation which is of the form

$$\begin{aligned}&[(J_{1}-J_{2}q+J_{3}q^2)+\delta (J_{4}q^2-J_{5}q^3+J_{6}q^4)]q_{\tau \tau }\nonumber \\&\qquad +\, \Big [\mu \Big \{(J_{7}- J_{8}q+J_{9}q^2)+\delta (J_{10}q^2-J_{11}q^3+J_{12}q^4)\Big \}\Big ]q_{\tau }\nonumber \\&\qquad +\,\delta (J_{4}q-J_{5}q^2+J_{6}q^3)q^{2}_{\tau }+(J_{7}- J_{8}q+J_{9}q^2) q\nonumber \\&\qquad +\,\delta (J_{10}q^3-J_{11}q^4+J_{12}q^5)\nonumber \\&\qquad -\,J_{13}(\gamma +\eta \cos (\varOmega _\mathrm{ac}\tau ))^2=0\qquad \qquad \end{aligned}$$
(7.26)

where the various integral coefficients in Eq. (7.26) are given in Eq. (7.27).

$$\begin{aligned} J_{1}= & {} \int _{0}^{1}\phi ^2\hbox {d}s,\, J_{2}=2\int _{0}^{1}\phi ^3\hbox {d}s,\, J_{3}=\int _{0}^{1}\phi ^4\hbox {d}s,\nonumber \\ J_{4}= & {} \int _{0}^{1}\phi \Big [\phi _{ss}\int _{1}^{s}\int _{0}^{s}(\phi _{s}^2)\hbox {d}s\hbox {d}s+\phi _{s}\int _{0}^{s}(\phi _{s}^2)\hbox {d}s\Big ]\hbox {d}s,\nonumber \\ J_{5}= & {} \int _{0}^{1}\phi \Big [2\phi \phi _{ss}\int _{1}^{s}\int _{0}^{s}(\phi _{s}^2)\hbox {d}s\hbox {d}s+2\phi \phi _{s}\int _{0}^{s}(\phi _{s}^2)\hbox {d}s\Big ]\hbox {d}s,\nonumber \\ J_{6}= & {} \int _{0}^{1}\phi \Big [\phi ^2\phi _{ss}\int _{1}^{s}\int _{0}^{s}(\phi _{s}^2)\hbox {d}s\hbox {d}s+\phi ^2\phi _{s}\int _{0}^{s}(\phi _{s}^2)\hbox {d}s\Big ]\hbox {d}s,\nonumber \\ J_{7}= & {} \int _{0}^{1}\phi \phi _{ssss}\hbox {d}s,\, J_{8}=2\int _{0}^{1}\phi ^2\phi _{ssss}\hbox {d}s,\,\nonumber \\ J_{9}= & {} \int _{0}^{1}\phi ^3\phi _{ssss}\hbox {d}s,\,\nonumber \\ J_{10}= & {} \int _{0}^{1}\phi \Big [\phi _{ss}^3+4\phi _{s}\phi _{ss}\phi _{sss}+\phi _{s}^2\phi _{ssss}\Big ]\hbox {d}s\nonumber \\ J_{11}= & {} \int _{0}^{1}2\phi ^2\Big [\phi _{ss}^3+4\phi _{s}\phi _{ss}\phi _{sss}+\phi _{s}^2\phi _{ssss}\Big ]\hbox {d}s,\nonumber \\ J_{12}= & {} \int _{0}^{1}\phi ^3\Big [\phi _{ss}^3+4\phi _{s}\phi _{ss}\phi _{sss}+\phi _{s}^2\phi _{ssss}\Big ]\hbox {d}s\nonumber \\ J_{13}= & {} \int _{0}^{1}\phi \hbox {d}s. \end{aligned}$$
(7.27)
Table 4 Nondimensional wave numbers
Table 5 Dimensions and material properties of a beam

Appendix B: IBVP for a two field cantilever

We consider a microcantilever beam with step-like heterogeneity of its width subjected to electrodynamic excitation along out-of-plane direction as shown in Fig. 1a. The two field equations of motion governing the microcantilever beam as found in [15, 27] are thus

$$\begin{aligned}&\rho A_{1}W_{1,t t}+DI_{1}W_{1,xxxxt}+EI_{1}W_{1,xxxx}=0,\nonumber \\&\quad 0<x<L_{1}\qquad \qquad \end{aligned}$$
(7.28)
$$\begin{aligned}&\rho A_{2}W_{2,t t}+DI_{2}\Big [W_{2,xxxt}+W_{2,xt}W_{2,xx}^2\nonumber \\&\qquad +W_{2,xxxt}W_{2,x}^2\Big ]_{x}\nonumber \\&\qquad +EI_{2}\Big [W_{2,xxx} +W_{2,x}({{W}_{2,x}}W_{2,xx})_{x}\Big ]_{x}\nonumber \\&\qquad +\frac{1}{2}\rho A_{n2}\Big [W_{2,x}\int _{L}^{x}\Big ( \int _{L_{1}}^{x}{W^{2}_{2,x}\hbox {d}x}\Big )_{tt}\hbox {d}x\Big ]_{x}\nonumber \\&\quad =Q_{V},\, L_{1}<x<L\qquad \end{aligned}$$
(7.29)

where \(W_{i}\), \(\rho A_{i}\), and \(EI_{i}\) are the beam transverse displacements, longitudinal mass density, and bending stiffness, respectively. For rectangular cross sections, the area is \(A_{i}=HB_{i}\) and the bending moment of inertia is \(I_{i}=B_{i}H^3/12\), where \(B_{i}\) and H are the beam width and thickness as shown in Fig. 1 and D is internal material damping based on a Voigt–Kelvin model [13]. The electrodynamic excitation \(Q_{V}\) along out-of-plane direction is given by

$$\begin{aligned} Q_{V}={\frac{\epsilon _{0}B_{2}}{2}} {{V}_{f}}^2 \Big [\frac{1}{\big (d-W_{2}\big )^2}\Big ] \end{aligned}$$
(7.30)

where \({V}_{f}=V_\mathrm{dc}+V_\mathrm{ac}\cos (\varOmega t)\), d is distance between beam and bottom substrate, \(\epsilon _{0}=8.854\times 10^{-12}\) is permitivity of free space. The corresponding fixed boundary conditions of the microbeam are as follows

$$\begin{aligned} W_{1}(0,t)= & {} W_{1,x}(0,t)=0,\,W_{2,xx}(L,t)\nonumber \\= & {} W_{2,xxx}(L,t)=0 \end{aligned}$$
(7.31)

The continuity conditions between two fields at \(x=L_{1}\) in Fig. 1 are

$$\begin{aligned}&W_{1}(L_{1},t)=W_{2}(L_{1},t),\, EI_{1}W_{1,xx}(L_{1},t)=EI_{2}\nonumber \\&\quad W_{2,xx}(L_{1},t),\,W_{1,x}(L_{1},t)=W_{2,x}(L_{1},t), \nonumber \\&\quad EI_{1}W_{1,xxx}(L_{1},t)=EI_{2}W_{2,xxx}(L_{1},t) \end{aligned}$$
(7.32)

We nondimensionalize the governing equations with the variables \(w_{i}={W_{i}}/{d}\), \(s={x}/{L}\) and \(\tau ={t}/{T_{s}}\) where \(T_{s}^2=({\rho A_{1}L^4}/{EI_{1}})^2\) and \(\omega _{s}=1/T_{s}\). The non-dimensionalized equations of motion are given by

$$\begin{aligned}&w_{1,\tau \tau }+w_{1,ssss}+\mu w_{1,ssss\tau }=0,\quad 0<s<\alpha \nonumber \\ \end{aligned}$$
(7.33)
$$\begin{aligned}&w_{2,\tau \tau }+w_{2,ssss}+\mu \Big [w_{2,sss\tau }+\delta (w_{2,s\tau }w_{2,ss}^2\nonumber \\&\qquad +w_{2,sss\tau } w_{2,s}^2)\Big ]_{s}+\delta \Big [w_{2,s}({{w}_{2,s}}w_{2,ss})_{s}\Big ]_{s}\nonumber \\&\qquad +\delta \frac{1}{2}\Big [w_{2,s} \int _{1}^{s}\Big ( \int _{\alpha }^{s}{w^{2}_{2,s}\hbox {d}s}\Big )_{\tau \tau }\hbox {d}s\Big ]_{s}\nonumber \\&\qquad = \Big [\frac{(\gamma +\eta \cos (\varOmega _\mathrm{ac}\tau )^2}{\big (1-w_{2}\big )^2}\Big ]\quad \alpha<s<1 \qquad \qquad \end{aligned}$$
(7.34)

The nondimensionalize boundary conditions and continuity conditions are as follows

$$\begin{aligned} w_{1}(0,\tau )= & {} w_{1,s}(0,\tau )=0,\, \nonumber \\ w_{2,ss}(1,\tau )= & {} w_{2,sss}(1,\tau )=0 \nonumber \\ w_{1}(\alpha ,\tau )= & {} w_{2}(\alpha ,\tau ),\, \nonumber \\ w_{1,ss}(\alpha ,\tau )= & {} \beta w_{2,ss}(\alpha ,\tau ),\, w_{1,s}\nonumber \\ (\alpha ,\tau )= & {} w_{2,s}(\alpha ,\tau ), \,\nonumber \\ w_{1,sss}(\alpha ,\tau )= & {} \beta w_{2,sss}(\alpha ,\tau ) \end{aligned}$$
(7.35)

The equivalent non-dimensionalized parameters in Eqs. (7.33)–(7.35) are written as

$$\begin{aligned} \alpha= & {} \frac{L_{1}}{L},\,\beta =\frac{B_{2}}{B_{1}},\,\mu =\frac{D\omega _{s}}{E}, \, \delta =\Big (\frac{d}{L}\Big )^2,\nonumber \\ \gamma= & {} \sqrt{\frac{6\epsilon _{0}H}{Ed^3}}\Big (\frac{L}{H}\Big )^2V_\mathrm{dc},\, \eta =\sqrt{\frac{6\epsilon _{0}H}{Ed^3}}\Big (\frac{L}{H}\Big )^2V_\mathrm{ac},\nonumber \\ \varOmega= & {} \frac{\varOmega _\mathrm{ac}}{\omega _{s}}.\qquad \, \end{aligned}$$
(7.36)
Table 6 Integral coefficients for n identical beams

1.1 Modal dynamical system

We neglect damping and forcing terms from Eqs. (7.33) and (7.34) which yields the two field equations of motion for the unforced and undamped vibrations \(w_{i,\tau \tau }+w_{i,ssss}=0\)\((i=0 \ldots 2)\). Substituting \(w_{i}=q\phi _{i} (i=1 \ldots 2)\) into resulting equations yields the classical Euler–Bernoulli beam dispersion relationship \(\omega _{n}^2=z_{n}^4\). Substituting \(w_{i}=q\phi _{i}\)\((i=1 \ldots 2)\) into Eq. (7.35) yields

$$\begin{aligned} \phi _{1}(0)= & {} \phi _{1,s}(0)=0\qquad \phi _{2,ss}(1)=\phi _{2,sss}(1)=0 \nonumber \\ \phi _{1}(\alpha )= & {} \phi _{2}(\alpha )\qquad \phi _{1,ss}(\alpha )=\beta \phi _{2,ss}(\alpha ) \nonumber \\ \phi _{1,s}(\alpha )= & {} \phi _{2,s}(\alpha ) \qquad \phi _{1,sss}(\alpha )=\beta \phi _{2,sss}(\alpha )\nonumber \\ \end{aligned}$$
(7.37)

To obtain the mode shapes for two field system, we assume mode shapes of the form

$$\begin{aligned} \phi _{1}(s)= & {} A_{1}\cos (z_{n}s)+A_{2}\sin (z_{n}s)+A_{3}\cosh (z_{n}s)\nonumber \\&+A_{4}\sinh (z_{n}s)\nonumber \\ \phi _{2}(s)= & {} B_{1}\cos (z_{n}s)+B_{2}\sin (z_{n}s)+B_{3}\cosh (z_{n}s)\nonumber \\&+B_{4}\sinh (z_{n}s) \end{aligned}$$
(7.38)

where \(A_{j}\) and \(B_{j}\) are constants to be determined by the boundary and continuity conditions in Eq. (7.37). Substitution of Eq. (7.38) into Eq. (7.37) yields an algebraic linear system of equations, which has a nontrivial solution if the determinant of the following coefficient matrix vanishes.

$$\begin{aligned}&M\nonumber \\&=\left[ \begin{array}{cccccccc} 1&{}0&{}1&{}0&{}0&{}0&{}0&{}0\\ 0 &{}z_{n}&{}0&{}z_{n}&{}0&{}0&{}0&{}0\\ C\alpha &{}S\alpha &{}{ CH}\alpha &{}{ SH}\alpha &{}-C\alpha &{}-S\alpha &{}-{ CH}\alpha &{}-{ SH}\alpha \\ -S\alpha &{}C\alpha &{}{ SH}\alpha &{}{ CH} \alpha &{}S\alpha &{}-C\alpha &{}-{ SH}\alpha &{}-{ CH}\alpha \\ -C\alpha &{}-S\alpha &{}{ CH}\alpha &{}{ SH} \alpha &{}\beta C\alpha &{}\beta S\alpha &{}-\beta { CH}\alpha &{}-\beta { SH}\alpha \\ S\alpha &{}-C\alpha &{}{ SH}\alpha &{} { CH}\alpha &{}-\beta S\alpha &{}\beta C\alpha &{}-\beta { SH}\alpha &{} -\beta { CH}\alpha \\ 0&{}0&{}0&{}0&{}-{ C1}&{}-{ S1} &{}{ CH1}&{}{ SH1}\\ 0&{}0&{}0&{}0&{}{ S1}&{}-{ C1}&{}{ SH1}&{}{ CH1}\end{array} \right] \nonumber \\ \end{aligned}$$
(7.39)

where \(C\alpha =\cos (z_{n}\alpha )\), \(S\alpha =\sin (z_{n}\alpha )\), \(CH\alpha =\cosh (z_{n}\alpha )\), \(SH\alpha =\sinh (z_{n}\alpha )\),\(C1=\cos (z_{n})\), \(S1=\sin (z_{n})\), \(CH1=\cosh (z_{n})\), \(SH1=\sinh (z_{n})\). We find the determinant of Eq. (7.39) and solve it for \(z_{n}\) for different values of \(\alpha \) and \(\beta \). We substitute back \(z_{n}\) into Eq. (7.38), and using Eq. (7.37), we solve the simultaneous equations to find the constants \(A_{j}\) and \(B_{j}\) which satisfies the orthogonality condition for various values of \(\alpha \) and \(\beta \). The nondimensional wave numbers for different \(\alpha \) and \(\beta \) are shown in Table 4.

We premultiply Eqs. (7.33) and (7.34) by denominator in Eq. (7.34) and derive the modal dynamic equations by applying Galerkin’s method. We substitute the assumed solutions as \(w_{i}(s, \tau ) = q(\tau )\phi _{i}(s) (i=1 \ldots 2)\) into Eqs. (7.33) and (7.34), and applying Galerkin’s method, we obtain ordinary differential equation which is of the form

$$\begin{aligned}&[(J_{11}{-}J_{12}q{+}J_{13}q^2)+\delta (J_{14}q^2-J_{15}q^3+J_{16}q^4)]q_{\tau \tau }\nonumber \\&\quad + \,\Big [\mu _{1} \Big \{(J_{17}- J_{18}q+J_{19}q^2)+\delta (J_{110}q^2-J_{111}q^3\nonumber \\&\quad +\,J_{112}q^4)\Big \}+\delta (J_{14}q-J_{15}q^2+J_{16}q^3)q^{2}_{\tau }\nonumber \\&\quad +\,(J_{17}- J_{18}q+J_{19}q^2) q\nonumber \\&\quad +\,\delta (J_{110}q^3-J_{111}q^4+J_{112}q^5)-J_{113}(\gamma \nonumber \\&\quad +\,\eta \cos (\varOmega _\mathrm{ac}\tau ))^2=0 \qquad \,\, \end{aligned}$$
(7.40)

where the various integral coefficients in Eq. (7.40) are as follows

$$\begin{aligned} J_{11}= & {} \int _{0}^{\alpha }\phi _{1}^2\hbox {d}s+\int _{\alpha }^{1}\phi _{2}^2\hbox {d}s,\,\nonumber \\ J_{12}= & {} 2\int _{0}^{\alpha }\phi _{1}^2\phi _{2}\hbox {d}s+2\int _{\alpha }^{1}\phi _{2}^3\hbox {d}s,\nonumber \\ J_{13}= & {} \int _{0}^{\alpha }\phi _{1}^2\phi _{2}^2\hbox {d}s+\int _{\alpha }^{1}\phi _{2}^4\hbox {d}s,\nonumber \\ J_{14}= & {} \int _{\alpha }^{1}\phi _{2}\Big [\phi _{2ss}\int _{1}^{s}\int _{\alpha }^{s}(\phi _{2s}^2)\hbox {d}s\hbox {d}s+\phi _{2s}\int _{\alpha }^{s}(\phi _{2s}^2)\hbox {d}s\Big ]\hbox {d}s\nonumber \\ J_{15}= & {} \int _{\alpha }^{1}\phi _{2}\Big [2\phi _{2}\phi _{2ss}\int _{1}^{s}\int _{\alpha }^{s}(\phi _{2s}^2)\hbox {d}s\hbox {d}s\nonumber \\&+2\phi _{2}\phi _{2s}\int _{\alpha }^{s}(\phi _{2s}^2)\hbox {d}s\Big ]\hbox {d}s\nonumber \\ J_{16}= & {} \int _{\alpha }^{1}\phi _{2}\Big [\phi _{2}^2\phi _{2ss}\int _{1}^{s}\int _{\alpha }^{s}(\phi _{2s}^2)\hbox {d}s\hbox {d}s\nonumber \\&+\,\phi _{2}^2\phi _{2s}\int _{\alpha }^{s}(\phi _{2s}^2)\hbox {d}s\Big ]\hbox {d}s\nonumber \\ J_{17}= & {} \int _{0}^{\alpha }\phi _{1}\phi _{1ssss}\hbox {d}s+\int _{\alpha }^{1}\phi _{2}\phi _{2ssss}\hbox {d}s,\nonumber \\ J_{18}= & {} 2\int _{0}^{\alpha }\phi _{1}\phi _{2}\phi _{1ssss}\hbox {d}s+2\int _{\alpha }^{1}\phi _{2}^2\phi _{2ssss}\hbox {d}s\nonumber \\ J_{19}= & {} \int _{0}^{\alpha }\phi _{1}\phi _{2}^2\phi _{1ssss}\hbox {d}s+\int _{\alpha }^{1}\phi _{2}^3\phi _{2ssss}\hbox {d}s,\nonumber \\ J_{110}= & {} \int _{\alpha }^{1}\phi _{2}\Big [\phi _{2ss}^3+4\phi _{2s}\phi _{2ss}\phi _{2sss}+\phi _{2s}^2\phi _{2ssss}\Big ]\hbox {d}s\nonumber \\ J_{111}= & {} \int _{\alpha }^{1}2\phi _{2}^2\Big [\phi _{2ss}^3+4\phi _{2s}\phi _{2ss}\phi _{2sss}+\phi _{2s}^2\phi _{2ssss}\Big ]\hbox {d}s,\nonumber \\ J_{112}= & {} \int _{\alpha }^{1}\phi _{2}^3\Big [\phi _{2ss}^3+4\phi _{2s}\phi _{2ss}\phi _{2sss}+\phi _{2s}^2\phi _{2ssss}\Big ]\hbox {d}s,\nonumber \\ J_{113}= & {} \int _{\alpha }^{1}\phi _{2}\hbox {d}s,\nonumber \\ \end{aligned}$$
(7.41)

Appendix C: Properties of the array

This appendix includes dimensions, material properties, and physical parameters for \(\kappa =3.3\times 10^5\) (estimated value) and for \(\kappa =1.3\times 10^6\) given in Table 5.

Appendix D: Integral coefficients for the array

This appendix includes integral coefficients of Eq. (2.13). All integral coefficients evaluated for \(\alpha =0.075\), \(\beta =0.22\) and for \(\alpha =0.075\), \(\beta =0.12\) are given in Table 6.

$$\begin{aligned} J_{n1}= & {} \int _{0}^{\alpha }\phi _{n1}^2\hbox {d}s+\int _{\alpha }^{1}\phi _{n2}^2\hbox {d}s,\nonumber \\ J_{n2}= & {} 2\int _{0}^{\alpha }\phi _{n1}^2\phi _{n2}\hbox {d}s+2\int _{\alpha }^{1}\phi _{n2}^3\hbox {d}s,\nonumber \\ J_{n3}= & {} \int _{0}^{\alpha }\phi _{n1}^2\phi _{n2}^2\hbox {d}s+\int _{\alpha }^{1}\phi _{n2}^4\hbox {d}s,\nonumber \\ J_{n4}= & {} \int _{\alpha }^{1}\phi _{n2}\Big [\phi _{n2ss}\int _{1}^{s}\int _{\alpha }^{s}2(\phi _{n2s}^2)\hbox {d}s\hbox {d}s\nonumber \\&+\,\phi _{n2s}\int _{\alpha }^{s}2(\phi _{n2s}^2)\hbox {d}s\Big ]\hbox {d}s\nonumber \\ J_{n5}= & {} \int _{\alpha }^{1}\phi _{n2}\Big [2\phi _{n2}\phi _{n2ss}\int _{1}^{s}\int _{\alpha }^{s}2(\phi _{n2s}^2)\hbox {d}s\hbox {d}s\nonumber \\&+\,2\phi _{n2}\phi _{n2s}\int _{\alpha }^{s}2(\phi _{n2s}^2)\hbox {d}s\Big ]\hbox {d}s\nonumber \\ J_{n6}= & {} \int _{\alpha }^{1}\phi _{n2}\Big [\phi _{n2}^2\phi _{n2ss}\int _{1}^{s}\int _{\alpha }^{s}2(\phi _{n2s}^2)\hbox {d}s\hbox {d}s\nonumber \\&+\,\phi _{n2}^2\phi _{n2s}\int _{\alpha }^{s}2(\phi _{n2s}^2)\hbox {d}s\Big ]\hbox {d}s\nonumber \\ J_{n7}= & {} \int _{0}^{\alpha }\phi _{n1}\phi _{n1ssss}\hbox {d}s+\int _{\alpha }^{1}\phi _{n2}\phi _{n2ssss}\hbox {d}s,\nonumber \\ J_{n8}= & {} 2\int _{0}^{\alpha }\phi _{n1}\phi _{n2}\phi _{n1ssss}\hbox {d}s+2\int _{\alpha }^{1}\phi _{n2}^2\phi _{n2ssss}\hbox {d}s \nonumber \\ J_{n9}= & {} \int _{0}^{\alpha }\phi _{n1}\phi _{n2}^2\phi _{n1ssss}\hbox {d}s+\int _{\alpha }^{1}\phi _{n2}^3\phi _{n2ssss}\hbox {d}s,\nonumber \\ J_{n10}= & {} \int _{\alpha }^{1}\phi _{n2}\Big [\phi _{n2ss}^3+4\phi _{n2s}\phi _{n2ss}\phi _{n2sss}+\phi _{n2s}^2\phi _{n2ssss}\Big ]\hbox {d}s\nonumber \\ J_{n11}= & {} \int _{\alpha }^{1}2\phi _{n2}^2\Big [\phi _{n2ss}^3+4\phi _{n2s}\phi _{n2ss}\phi _{n2sss}+\phi _{n2s}^2\phi _{n2ssss}\Big ]\hbox {d}s\nonumber \\ J_{n12}= & {} \int _{\alpha }^{1}\phi _{n2}^3\Big [\phi _{n2ss}^3+4\phi _{n2s}\phi _{n2ss}\phi _{n2sss}+\phi _{n2s}^2\phi _{n2ssss}\Big ]\hbox {d}s\nonumber \\ J_{n13}= & {} \int _{0}^{\alpha }\phi _{n1}^2\hbox {d}s, J_{n14}=2\int _{0}^{\alpha }\phi _{n2}\phi _{n1}^2\hbox {d}s,\nonumber \\ J_{n15}= & {} \int _{0}^{\alpha }\phi _{n2}^2\phi _{n1}^2\hbox {d}s,J_{n16}=\int _{0}^{\alpha }\phi _{n1}\phi _{(n-1)1}\hbox {d}s,\nonumber \\ J_{n17}= & {} 2\int _{0}^{\alpha }\phi _{n2}\phi _{n1}\phi _{(n-1)1}\hbox {d}s,\nonumber \\ J_{n18}= & {} \int _{0}^{\alpha }\phi _{n2}^2\phi _{n1}\phi _{(n-1)1}\hbox {d}s ,\, J_{n19}=\int _{0}^{\alpha }\phi _{n1}\phi _{(n+1)1}\hbox {d}s,\nonumber \\ J_{n20}= & {} 2\int _{0}^{\alpha }\phi _{n2}\phi _{n1}\phi _{(n+1)1}\hbox {d}s \nonumber \\ J_{n21}= & {} \int _{0}^{\alpha }\phi _{n2}^2\phi _{n1}\phi _{(n+1)1}\hbox {d}s, \, J_{n22}=\int _{\alpha }^{1}\phi _{n2}\hbox {d}s, \end{aligned}$$
(7.42)

Note that for identical beams \(J_{nj}\) are equal and \(\phi _{n-1}=\phi _{n}=\phi _{n+1}\) for all n.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kambali, P.N., Torres, F., Barniol, N. et al. Nonlinear multi-element interactions in an elastically coupled microcantilever array subject to electrodynamic excitation. Nonlinear Dyn 98, 3067–3094 (2019). https://doi.org/10.1007/s11071-019-05074-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05074-7

Keywords

Navigation