Skip to main content
Log in

Non-fragile saturation control of nonlinear positive Markov jump systems with time-varying delays

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates non-fragile saturation control of nonlinear positive Markov jump systems, which contain sector nonlinear functions and time-varying delays. The saturation controller to be designed is supposed to have either multiplicative or additive gain uncertainty. First, a sufficient condition for the positivity of an auxiliary nonlinear system with sector restriction is established. By employing a nonlinear co-positive-type Lyapunov functional, a non-fragile control of the considered systems with multiplicative and additive perturbations is proposed in terms of linear programming, respectively. A set of non-fragile state feedback controllers associated with auxiliary feedback gains is designed using a matrix decomposition technique. Based on the designed controllers, the corresponding closed-loop systems are positive and stable with an \(L_{1}\)-gain performance and the system states converge to a cone set. Furthermore, an optimization method is developed to estimate the maximum invariant set. Compared with existing results, the proposed technique is not only less conservative but also reliable in practice. Finally, two simulation examples are provided to show the effectiveness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caccetta, L., Foulds, L., Rumchev, V.G.: A positive linear discrete-time model of capacity planning and its controllability properties. Math. Comput. Model. 40(1–2), 217–226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hernandez-Vargas, E., Colaneri, P., Middleton, R., et al.: Discrete-time control for switched positive systems with application to mitigating viral escape. Int. J. Robust Nonlinear Control 21(10), 1093–1111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Farina, L., Rinaldi, S.: Positive Linear Systems: Theory and Applications. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  4. Shorten, R., Wirth, F., Leith, D.: A positive systems model of TCP-like congestion control: asymptotic results. IEEE/ACM Trans. Netw. (TON) 14(3), 616–629 (2006)

    Article  Google Scholar 

  5. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Shen, J., Lam, J.: \(L_{\infty }\)-gain analysis for positive systems with distributed delays. Automatica 50(1), 175–179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Knorn, F., Mason, O., Shorten, R.: On linear co-positive Lyapunov functions for sets of linear positive systems. Automatica 45(8), 1943–1947 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. M Ait, Rami : Solvability of static output-feedback stabilization for LTI positive systems. Syst. Control Lett. 60(9), 704–708 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, G., Yang, Y.: Finite-time stability of switched positive linear systems. Int. J. Robust Nonlinear Control 24(1), 179–190 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, X., Lam, J., Li, P., et al.: \(\ell _{1}\)-induced norm and controller synthesis of positive systems. Automatica 49(5), 1377–1385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, S., Zhang, J., Chen, Y., et al.: Robust stochastic stabilization for positive Markov jump systems with actuator saturation. Circuits, Syst., Signal Process. 38(2), 625–642 (2019)

    Article  MathSciNet  Google Scholar 

  12. Qi, W., Park, J.H., Zong, G., Cao, J., Cheng, J.: A fuzzy Lyapunov function approach to positive \(L_1\) observer design for positive fuzzy semi-Markovian switching systems with its application. IEEE Trans. Syst., Man, Cybern.: Syst. (2018). https://doi.org/10.1109/TSMC.2018.2882536

    Google Scholar 

  13. Ge, X., Han, Q.: Distributed fault detection over sensor networks with Markovian switching topologies. Int. J. Gen. Syst. 43(3–4), 305–318 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong, J., Kim, W.: Markov-chain-based output feedback control for stabilization of networked control systems with random time delays and packet losses. Int. J. Control, Autom. Syst. 10(5), 1013–1022 (2012)

    Article  Google Scholar 

  15. de Souza, C.E., Trofino, A., Barbosa, K.: Mode-independent \(H_{\infty } \) Filters for Markovian jump linear systems. IEEE Trans. Autom. Control 51(11), 1837–1841 (2006)

    Article  MATH  Google Scholar 

  16. Liu, Y., Fang, F., Park, J.H., et al.: Asynchronous output feedback dissipative control of Markovian jump systems with input time delay and quantized measurements. Nonlinear Anal.: Hybrid Syst. 31, 109–122 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Liu, Y., Park, J.H., Guo, B., Fang, F., Zhou, F.: Event-triggered dissipative synchronization for Markovian jump neural networks with general transition probabilities. Int. J. Robust Nonlinear Control 28(13), 3893–3908 (2018)

    Article  MATH  Google Scholar 

  18. Shen, H., Li, F., Xu, S., Sreeram, V.: Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations. IEEE Trans. Autom. Control 63(8), 2709–2714 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shen, H., Zhu, Y., Zhang, L., Park, J.H.: Extended dissipative state estimation for Markov jump neural networks with unreliable links. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 346–358 (2017)

    Article  MathSciNet  Google Scholar 

  20. Lian, J., Liu, J., Zhuang, Y.: Mean stability of positive Markov jump linear systems with homogeneous and switching transition probabilities. IEEE Trans. Circuits Syst. II: Express Briefs 62(8), 801–805 (2015)

    Article  Google Scholar 

  21. Bolzern, P., Colaneri, P., De Nicolao, G.: Stochastic stability of positive Markov jump linear systems. Automatica 50(4), 1181–1187 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu, S., Han, Q., Zhang, C.: \(l_{1}\)-gain performance analysis and positive filter design for positive discrete-time Markov jump linear systems: a linear programming approach. Automatica 50(8), 2098–2107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, J., Zhao, X., Zhu, F., et al.: \(L_{1}/\ell _{1}\)-Gain analysis and synthesis of Markovian jump positive systems with time delay. ISA Trans. 63, 93–102 (2016)

    Article  Google Scholar 

  24. Li, S., Xiang, Z.: Stochastic stability analysis and \(L_{\infty }\)-gain controller design for positive Markov jump systems with time-varying delays. Nonlinear Anal.: Hybrid Syst. 22, 31–42 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Zhang, D., Zhang, Q., Du, B.: \(L_{1}\) fuzzy observer design for nonlinear positive Markovian jump system. Nonlinear Anal.: Hybrid Syst. 27, 271–288 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Bartosiewicz, Z.: Local observability of nonlinear positive continuous-time systems. Automatica 78, 135–138 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, J., Zhao, X., Cai, X.: Absolute exponential \(L_{1}\)-gain analysis and synthesis of switched nonlinear positive systems with time-varying delay. Appl. Math. Comput. 284, 24–36 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Wang, D., Wang, Z., Li, G., et al.: Distributed filtering for switched nonlinear positive systems with missing measurements over sensor networks. IEEE Sens. J. 16(12), 4940–4948 (2016)

    Article  Google Scholar 

  29. Liu, X.: Stability analysis of a class of nonlinear positive switched systems with delays. Nonlinear Anal.: Hybrid Syst. 16, 1–12 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, H., Shi, Y., Wang, J.: On energy-to-peak filtering for nonuniformly sampled nonlinear systems: a Markovian jump system approach. IEEE Trans. Fuzzy Syst. 22(1), 212–222 (2014)

    Article  Google Scholar 

  31. Zhong, X., He, H., Zhang, H., et al.: Optimal control for unknown discrete-time nonlinear Markov jump systems using adaptive dynamic programming. IEEE Trans. Neural Netw. Learn. Syst. 25(12), 2141–2155 (2014)

    Article  Google Scholar 

  32. Shen, M., Park, J.H., Ye, D.: A separated approach to control of Markov jump nonlinear systems with general transition probabilities. IEEE Trans. Cybern. 46(9), 2010–2018 (2016)

    Article  Google Scholar 

  33. Li, H., Shi, P., Yao, D., et al.: Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica 64, 133–142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Cheng, J., Park, J.H., Liu, Y., et al.: Finite-time \(H_{\infty }\) fuzzy control of nonlinear Markovian jump delayed systems with partly uncertain transition descriptions. Fuzzy Sets Syst. 314, 99–115 (2017)

    Article  MATH  Google Scholar 

  35. Cao, Y., Lin, Z.: Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation. IEEE Trans. Fuzzy Syst. 11(1), 57–67 (2003)

    Article  Google Scholar 

  36. Wen, C., Zhou, J., Liu, Z., et al.: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Autom. Control 56(7), 1672–1678 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, Y., Tong, S., Li, T.: Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation. Fuzzy Sets Syst. 248, 138–155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gao, W., Selmic, R.: Neural network control of a class of nonlinear systems with actuator saturation. IEEE Trans. Neural Netw. 17(1), 147–156 (2006)

    Article  Google Scholar 

  39. Ran, M., Wang, Q., Dong, C.: Stabilization of a class of nonlinear systems with actuator saturation via active disturbance rejection control. Automatica 63, 302–310 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Chen, Y., Fei, S., Li, Y.: Stabilization of neutral time-delay systems with actuator saturation via auxiliary time-delay feedback. Automatica 52, 242–247 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, J., Zhao, J.: Stabilisation of switched positive systems with actuator saturation. IET Control Theory Appl. 10(6), 717–723 (2016)

    Article  MathSciNet  Google Scholar 

  42. Wei, Y., Zheng, W., Xu, S.: Robust output feedback control of uncertain time-delay systems with actuator saturation and disturbances. J. Frankl. Inst. 352(5), 2229–2248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, H., Boukas, E.K., Sun, F., et al.: Controller design for Markov jumping systems subject to actuator saturation. Automatica 42(3), 459–465 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang, G., Wang, J.: Non-fragile \(H_{\infty }\) control for linear systems with multiplicative controller gain variations. Automatica 37(5), 727–737 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu, Y., Su, H., Lu, R., et al.: Passivity-based non-fragile control for Markovian jump systems with aperiodic sampling. Syst. Control Lett. 84, 35–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shu, Z., Lam, J., Xiong, J.: Non-fragile exponential stability assignment of discrete-time linear systems with missing data in actuators. IEEE Trans. Autom. Control 54(3), 625–630 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang, G., Che, W.: Non-fragile \(H_{\infty }\) filter design for linear continuous-time systems. Automatica 44(11), 2849–2856 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, F., Dong, H., Wang, Z., et al.: A new approach to non-fragile state estimation for continuous neural networks with time-delays. Neurocomputing 197, 205–211 (2016)

    Article  Google Scholar 

  49. He, Y., Wang, Q., Lin, C., et al.: Delay-range-dependent stability for systems with time-varying delay. Automatica 43(2), 371–376 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Qiu, J., Wei, Y., Karimi, H.R.: New approach to delay-dependent \(H_{\infty }\) control for continuous-time Markovian jump systems with time-varying delay and deficient transition descriptions. J. Frankl. Inst. 352(1), 189–215 (2015)

    Article  MATH  Google Scholar 

  51. Hale, J., Lunel, S.: Introduction to Functional Differential Equations. Springer, Berlin (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Nature Science Foundation of China (Nos. 61873314, 61503107, and 61673149), the Foundation of Key Laboratory of System Control and Information Processing, Ministry of Education China (No. Scip201803), and the Foundation of Zhejiang Provincial Education Department (No. Y201840738).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Raïssi, T. & Li, S. Non-fragile saturation control of nonlinear positive Markov jump systems with time-varying delays. Nonlinear Dyn 97, 1495–1513 (2019). https://doi.org/10.1007/s11071-019-05068-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05068-5

Keywords

Navigation