Skip to main content
Log in

Enhanced global flower pollination algorithm for parameter identification of chaotic and hyper-chaotic system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The problem of system parameter identification is a fundamental problem in the field of nonlinear science, which can be described as a multidimensional optimization problem. In this paper, an enhanced global flower pollination algorithm (GFPA) is proposed for parameter identification of chaotic and hyper-chaotic systems. The motion trajectory of the flower pollination algorithm is analyzed for the first time, and the equation of the algorithm exploration phase is improved by the chaotic mapping method to ensure the convergence of the algorithm in the exploration phase. In addition, in order to improve the convergence speed of the algorithm, the update method of the exploitation phase is reset by using the best information to guide the searching. Through analysis, the proposed new algorithm can guarantee the convergence of the algorithm without increasing the time complexity. Finally, we identify and validate the system of the Lorenz, Rössler, Chen and the system of the Rössler hyper-chaotic, Chen hyper-chaotic. The experimental results show that GFPA has better identification effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

X :

State vector of the system

\(\dot{X}\) :

A n-dimensional chaotic system

\(\tilde{X}\) :

State vector of the system to be identified

\(\tilde{\dot{X}}\) :

The system to be identified

\(X_0\) :

Initial state vector of the system

\(\theta _0\) :

Actual sequence of parameters

\(\theta \) :

Estimate value for the system identification

M :

Length of the output sequence obtained from the operation of the real chaotic system

x :

Decision variables in optimization algorithms

References

  1. Chen, Z., Yuan, X., Yuan, Y., et al.: Parameter identification of chaotic and hyper-chaotic systems using synchronization-based parameter observer. IEEE Trans. Circuits Syst. I: Regul. Pap. 63(9), 1464–1475 (2016)

    Article  MathSciNet  Google Scholar 

  2. Yue, W., Zhou, Y., Long, B.: Discrete wheel-switching chaotic system and applications. IEEE Trans. Circuits Syst. I: Regul. Pap. 61(12), 3469–3477 (2017)

    Google Scholar 

  3. Shekofteh, Y., Sajad, J., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems. Soft Comput. (2018). https://doi.org/10.1007/s00500-018-3129-6

    Article  Google Scholar 

  4. Wan, L., Liu, J., Lu, Z.R.: Incremental response sensitivity approach for parameter identification of chaotic and hyper-chaotic systems. Nonlinear Dyn. 89(1), 153–167 (2017)

    Article  Google Scholar 

  5. Shemyakin, V., Haario, H.: Online identification of large-scale chaotic system. Nonlinear Dyn. 93(2), 961–975 (2018)

    Article  Google Scholar 

  6. Vargas, T.A.R., Witold, P., Elder, M.H.: Improved learning algorithm for two-layer neural networks for identification of nonlinear systems. Neurocomputing 329, 86–96 (2019)

    Article  Google Scholar 

  7. Ho, W.H., Chou, J.H., Guo, C.Y.: Parameter identification of chaotic systems using improved differential evolution algorithm. Nonlinear Dyn. 61(1–2), 29–41 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lin, J., Chen, C.: Parameter estimation of chaotic systems by an oppositional seeker optimization algorithm. Nonlinear Dyn. 76(1), 509–517 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pan, Q.K., Sang, H.Y., Duan, J.H., et al.: An improved fruit fly optimization algorithm for continuous function optimization problems. Knowl.-Based Syst. 62, 69–83 (2014)

    Article  Google Scholar 

  10. Chen, Y., Pi, D.: Novel fruit fly algorithm for global optimisation and its application to short-term wind forecasting. Connect. Sci. (2019). https://doi.org/10.1080/09540091.2019.1573419

    Article  Google Scholar 

  11. Sun, J., Zhao, J., Wu, X., et al.: Parameter estimation for chaotic systems with a drift particle swarm optimization method. Phys. Lett. A 374(28), 2816–2822 (2010)

    Article  MATH  Google Scholar 

  12. Modares, H., Alfi, A., Fateh, M.M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization. Expert Syst. Appl. 37(5), 3714–3720 (2010)

    Article  Google Scholar 

  13. Peng, H., Li, L., Yang, Y., et al.: Parameter estimation of dynamical systems via a chaotic ant swarm. Phys. Rev. E.81(1), 016207 (2010)

    Google Scholar 

  14. Anh, H.P.H., Son, N.N., Van, K.C., et al.: Parameter identification using adaptive differential evolution algorithm applied to robust control of uncertain nonlinear systems. Appl. Soft Comput. 71, 672–684 (2018)

    Article  Google Scholar 

  15. Lazzús, J.A., Rivera, M., López-Caraballo, C.H.: Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm. Phys. Lett. A 380(11), 1164–1171 (2016)

    Article  MathSciNet  Google Scholar 

  16. Li, X., Yin, M.: Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dyn. 77(1), 61–71 (2014)

    Article  MathSciNet  Google Scholar 

  17. Chen, F., Ding, Z., Lu, Z., et al.: Parameters identification for chaotic systems based on a modified Jaya algorithm. Nonlinear Dyn. 94(4), 2307–2326 (2018)

    Article  Google Scholar 

  18. Li, C., Zhou, J., Xiao, J., et al.: Parameters identification of chaotic system by chaotic gravitational search algorithm. Chaos Solitons Fract. 45(4), 539–547 (2012)

    Article  Google Scholar 

  19. Ahandani, M.A., Ghiasi, A.R., Kharrati, H.: Parameter identification of chaotic systems using a shuffled backtracking search optimization algorithm. Soft Comput. 22(24), 8317–8339 (2018)

    Article  Google Scholar 

  20. Wang, J., Zhou, B., Zhou, S.: An improved cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation. Comput. Intell. Neurosci. (2016). https://doi.org/10.1155/2016/2959370

    Article  Google Scholar 

  21. Wang, J., Zhou, B.: A hybrid adaptive cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation. Neural Comput. Appl. 27(6), 1511–1517 (2016)

    Article  Google Scholar 

  22. Mousavi, Y., Alfi, A.: Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems. Chaos, Solitons Fract. 114, 202–215 (2018). https://doi.org/10.1016/j.chaos.2018.07.004

    Article  MATH  Google Scholar 

  23. Zhang, H., Li, B., Zhang, J., et al.: Parameter estimation of nonlinear chaotic system by improved TLBO strategy. Soft Comput. 20(12), 4965–4980 (2016)

    Article  Google Scholar 

  24. Jiang, Q., Wang, L., Hei, X.: Parameter identification of chaotic systems using artificial raindrop algorithm. J. Comput. Sci. 8, 20–31 (2015)

    Article  MathSciNet  Google Scholar 

  25. Xu, S., Wang, Y., Liu, X.: Parameter estimation for chaotic systems via a hybrid flower pollination algorithm. Neural Comput. Appl. 30(8), 2607–2623 (2018)

    Article  Google Scholar 

  26. Yang, X.S.: Flower pollination algorithm for global optimization. In: Proceedings International Conference on Unconventional Computing and Natural Computation. pp. 240–249 (2012)

  27. Yang, X.S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)

    Article  MathSciNet  Google Scholar 

  28. Draa, A.: On the performances of the flower pollination algorithm—qualitative and quantitative analyses. Appl. Soft Comput. 34, 349–371 (2015). https://doi.org/10.1016/j.asoc.2015.05.015

    Article  Google Scholar 

  29. Salgotra, R., Singh, U.: Application of mutation operators to flower pollination algorithm. Expert Syst. Appl. 79, 112–129 (2017). https://doi.org/10.1016/j.eswa.2017.02.035

    Article  Google Scholar 

  30. Nabil, E.: A modified flower pollination algorithm for global optimization. Expert Syst. Appl. 57, 192–203 (2016)

    Article  Google Scholar 

Download references

Funding

This work was supported by Nation Natural Science Foundation of China (U1433116), the Fundamental Research Funds for the Central Universities (NZ2013306) and Science and Technology Research Project of Jiangxi Education Department (GJJ180442)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DeChang Pi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Pi, D. & Wang, B. Enhanced global flower pollination algorithm for parameter identification of chaotic and hyper-chaotic system. Nonlinear Dyn 97, 1343–1358 (2019). https://doi.org/10.1007/s11071-019-05052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05052-z

Keywords

Navigation